alumina trihydrate
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 29)

H-INDEX

17
(FIVE YEARS 2)

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3024
Author(s):  
M. Hassan Raza ◽  
Abraiz Khattak ◽  
Asghar Ali ◽  
Safi Ullah Butt ◽  
Bilal Iqbal ◽  
...  

Degradation of silicon rubber due to heat and humidity affect its performance in outdoor applications. To analyze the effects of high temperature and humidity on room temperature vulcanized (RTV) silicone rubber (SiR) and its composites, this study was performed. Five different sample compositions including neat silicone rubber (nSiR), microcomposites (15 wt% silica(SMC 15% SiO2) and 15 wt% ATH(SMC 15% ATH), nanocomposite (2.5 wt% silica(SNC 2.5% SiO2) and hybrid composite (10 wt% micro alumina trihydrate with 2 wt% nano silica(SMNC 10% ATH 2% SiO2) were prepared and subjected to 70 ˚C temperature and 80% relative humidity in an environmental chamber for 120 h. Contact angle, optical microscopy and Fourier transform infrared (FTIR) spectroscopy were employed to analyze the recovery properties before and after applying stresses. Different trends of degradation and recovery were observed for different concentrations of composites. Addition of fillers improved the overall performance of composites and SMC 15% ATH composite performed better than other composites. For high temperature and humidity, the ATH-based microcomposite was recommended over silica due to its superior thermal retardation properties of ATH. It has been proved that ATH filler is able to withstand high temperature and humidity.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2134
Author(s):  
Sandra Paszkiewicz ◽  
Izabela Irska ◽  
Iman Taraghi ◽  
Elżbieta Piesowicz ◽  
Jakub Sieminski ◽  
...  

The effect of the presence of halloysite nanotubes (HNTs) and silane-treated alumina trihydrate (ATH-sil) nanofillers on the mechanical, thermal, and flame retardancy properties of ethylene-vinyl acetate (EVA) copolymer/low-density polyethylene (LDPE) blends was investigated. Different weight percentages of HNT and ATH-sil nanoparticles, as well as the hybrid system of those nanofillers, were melt mixed with the polymer blend (reference sample) using a twin-screw extruder. The morphology of the nanoparticles and polymer compositions was studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The mechanical properties, hardness, water absorption, and melt flow index (MFI) of the compositions were assessed. The tensile strength increases as a function of the amount of HNT nanofiller; however, the elongation at break decreases. In the case of the hybrid system of nanofillers, the compositions showed superior mechanical properties. The thermal properties of the reference sample and those of the corresponding sample with nanofiller blends were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Two peaks were observed in the melting and crystallization temperatures. This shows that the EVA/LDPE is an immiscible polymer blend. The thermal stability of the blends was improved by the presence of HNTs and ATH-sil nanoparticles. Thermal degradation temperatures were shifted to higher values by the presence of hybrid nanofillers. Finally, the flammability of the compositions was assessed. Flammability as reflected by the limiting oxygen index (OI) was increased by the presence of HNT and ATH-sil nanofiller and a hybrid system of the nanoparticles.


Author(s):  
Mohamed Mokhtar ◽  
Loai S. Nasrat ◽  
Mahmoud A. Attia

Abstract Enhancement of Dielectric strength is an important issue to enhance power system reliability. Insulation filling such as Alumina Trihydrate (ATH) and Silicon dioxide (Sio2) are used to enhance the dielectric strength of polymer insulator. The paper proposes a mathematical model of dielectric strength considering different temperatures and filling percentages using neural network. Moreover, comparison of filling materials is carried out through this model. The comparison shows the superiority of ATH in enhancing the dielectric strength of the polymer. Also, the obtained model will help in getting the best filling concentration without needing to repeat the tests which can be considered as a techno-economical solution to enhance the dielectric strength. Finally, the curve fitting is used to get the dielectric strength model not only as a function of filling concentration percentage but also as a function of temperature.


Author(s):  
Hussein M. Nabil ◽  
Loai S. Nasrat ◽  
Salah M. Kamel

This paper illustrated the electrical characteristic of High Density Polyethylene (HDPE) by adding an alumina trihydrate (ATH)filler At concentrations vary from 0% to 40%. Multiple Regression Analysis (MRA) was used to find the best suitable curve between the percentages of ATH filler and the Break down Voltages (kV/mm).


Author(s):  
EHP Silva ◽  
GSC Souza ◽  
DB Janes ◽  
G Waldow ◽  
FCP Sales ◽  
...  

Flexural and flammability evaluation of a new bio-based polyurethane foam (PUF) with alumina trihydrate (ATH) added as flame retardant were carried out. The PUF was obtained from a blend of vegetable oils. Flexural behavior of the polyurethane with different mass fractions of flame retardant (ATH) was investigated according to ASTM D790-17. Flammability tests were performed according to ASTM D3801-20 and ASTM D635-14 for the vertical and horizontal positions, respectively. The ATH addition influenced the flexural strength of the tested specimens, showing mean values for pure PUF and PUF with 50% of ATH were very close, but the highest value was obtained for PUF with 20% of ATH. Besides, the maximum strain value under flexural load was substantially reduced as the ATH mass increased, which was 11.4% for pure PUF and 3.38% for PUF with 50% of ATH. The flexural modulus increased with ATH incorporation up to 40% mass fraction. The obtained values for pure PUF, PUF with 40% of ATH and PUF with 50% of ATH specimens were 30.63 ± 1.95 MPa, 73.01 ± 2.82 MPa, and 62.16 ± 2.30 MPa, respectively. In addition, flammability test results presented better responses as the amount of ATH increased. PUF with 40% of ATH received V-2 classification, and PUF with 50% of ATH obtained HB classification. Therefore, the results for PUF with the addition of ATH show that the new bio-based material can be designed by using different mass fractions. Thus, this material becomes very useful for many types of applications, such as furniture and automobile industries, as well as sandwich structures and building constructions.


Sign in / Sign up

Export Citation Format

Share Document