conveyor belts
Recently Published Documents


TOTAL DOCUMENTS

548
(FIVE YEARS 153)

H-INDEX

26
(FIVE YEARS 4)

Author(s):  
Michael Pieber ◽  
Konstantina Ntarladima ◽  
Robert Winkler ◽  
Johannes Gerstmayr

Abstract The present work addresses pipes conveying fluid and axially moving beams undergoing large deformations. A novel two dimensional beam finite element is presented, based on the Absolute Nodal Coordinate Formulation (ANCF) with an extra Eulerian coordinate to describe axial motion. The resulting formulation is well known as Arbitrary Lagrangian Eulerian (ALE) method, which is often used to model axially moving beams and pipes conveying fluid. The proposed approach, which is derived from an extended version of Lagrange's equations of motion, allows for the investigation of the stability of pipes conveying fluid and axially moving beams for a certain axial velocity and stationary state of large deformation. Additionally, a multibody modeling approach allows us to extend the beam formulation for co-moving discrete masses, which represent concentrated masses attached to the beam, e.g., gondolas in ropeway systems, or transported masses in conveyor belts. Within numerical investigations, we show that axially moving beams and a larger number of discrete masses behave similarly as the case of (continuously) distributed mass.


2022 ◽  
Vol 354 ◽  
pp. 00045
Author(s):  
Florin Adrian Păun ◽  
Dan Gabor

The conveyor belts are widely used and can be found, for example, in the underground and surface mining industry as well as in other industries involving the transport of various products, materials, etc. The need to ensure the transport of various products, materials, involves the use of conveyor belts in normal environments as well as in environments with a potentially explosive atmosphere. When used in potentially explosive atmospheres, conveyor belts shall not be sources of ignition for the explosive atmospheres generated by gases, vapors, flammable mists and/or combustible dusts in the mixture with the air. This involves the use of conveyor belts in a particular construction, compliance with the applicable essential safety and health requirements as well as granting a special attention to the identification/selection of types suitable for the specific field application. The purpose of the paper is to highlight the importance of testing by accredited laboratory tests, the flammability properties of conveyor belts intended for use in potentially explosive atmospheres, in order to easily identify/select, by end users, the types of conveyor belts adequate for specific application.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 169
Author(s):  
Emerson Klippel ◽  
Andrea Gomes Campos Bianchi ◽  
Saul Delabrida ◽  
Mateus Coelho Silva ◽  
Charles Tim Batista Garrocho ◽  
...  

There is a constant risk of iron ore collapsing during its transfer between processing stages in beneficiation plants. Existing instrumentation is not only expensive but also complex and challenging to maintain. In this research, we propose using edge artificial intelligence for early detection of landslide risk based on images of iron ore transported on conveyor belts. During this work, we defined the device edge and the deep neural network model. Then, we built a prototype will to collect images that will be used for training the model. This model will be compressed for use in the device edge. This same prototype will be used for field tests of the model under operational conditions. In building the prototype, a real-time clock was used to ensure the synchronization of image records with the plant’s process information, ensuring the correct classification of images by the process specialist. The results obtained in the field tests of the prototype with an accuracy of 91% and a recall of 96% indicate the feasibility of using deep learning at the edge to detect the type of iron ore and prevent its risk of avalanche.


Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 20
Author(s):  
Renee M. Holland ◽  
Jinru Chen ◽  
Himabindu Gazula ◽  
Harald Scherm

Although previous studies have examined microbial loads on food contact surfaces in blueberry packing plants, there is currently no information regarding microbial risks associated with mechanical berry harvesters used in commercial blueberry production. In this study, we surveyed up to nine fruit contact surfaces on seven mechanical harvesters in each of 2015 and 2016 in the field. These surfaces included the shaking rods at the front of the harvester, the sidewalls of the harvesting tunnel behind the shaking mechanism, the catcher plates collecting the detached berries, horizontal and vertical fruit conveyor belts, and berry lugs collecting the fruit at the back of the harvester. Swab samples were collected from each surface three times a day (morning, noon, and evening) and assessed for environmental and fecal indicator organisms including total aerobes, total yeasts and molds, coliforms and fecal coliforms, and enterococci. At the same time points, fruit samples were assessed for microbial loads before the fruit entered each harvester and after they exited the harvester. Results showed statistically significant differences in microbial loads among harvester surfaces, whereas the effect of sampling time was generally not significant. High levels of total aerobes and total yeasts and molds were recorded, especially on horizontal surfaces and/or those located at the bottom of the harvester such as the lower sidewall, the catcher plates, and the horizontal conveyor belt. These surfaces therefore should be targeted by cleaning and sanitization practices. There was also statistical evidence that passage through the harvester may increase the levels of the environmental microorganisms on fruit in the field. In contrast, fecal indicator organisms such as fecal coliforms and enterococci were detected only sporadically and at very low densities on harvester surfaces and blueberry fruit, and there was no evidence that passage through the harvester increased their levels on the fruit. Berry lugs consistently harbored microbial loads, and given their movement back and forth between the field and the packing plant, deserve particular attention with regard to cleaning, sanitization, and storage protocols.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 64
Author(s):  
Daniela Marasova ◽  
Miriam Andrejiova ◽  
Anna Grincova

Measurements of the dynamic load of conveyor belts of identical strengths were used to evaluate and compare the data for belts with and without a support system. The goal was to identify the effects of the support system in terms of a relative amount of impact energy absorbed by a conveyor belt. A dynamic model was designed based on selected parameters of the impact process. Damage to conveyor belts, caused by the absorption of impact energy, was evaluated using the applied methods of mathematical statistics.


2021 ◽  
Vol 48 (24) ◽  
Author(s):  
Christoph Böhm ◽  
Mark Reyers ◽  
Leon Knarr ◽  
Susanne Crewell

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7552
Author(s):  
Tsegaye Sh. Lemmi ◽  
Marcin Barburski ◽  
Adam Kabzinski ◽  
Krzysztof Frukacz

Textile-reinforced conveyor belts are most widely used in various industries, including in the mining, construction, and manufacturing industries, to transport materials from one place to another. The conveyor belt’s tensile strength, which primarily relies on the property of the carcass, determines the area of application of the belt. The main aim of the current work was to investigate the influence of vulcanization temperature and duration of the vulcanization process on the tensile properties of the carcass part of the conveyor belt. An extensive experiment was carried out on the tensile properties of woven fabrics that were intended to reinforce conveyor belts by aging the fabrics at the temperature of 140 °C, 160 °C, and 220 °C for six and thirty-five minutes of aging durations. Afterward, the textile-reinforced conveyor belts were produced at vulcanization temperatures of 140 °C, 160 °C, and 220 °C for six and thirty-five minutes of vulcanizing durations. The influence of the vulcanization process parameters on the tensile property of fabrics utilized for the reinforcement of the conveyor belt was analyzed. In addition, the effect of the dipping process of woven fabric in resorcinol–formaldehyde–latex on the tensile property of polyester/polyamide 66 woven fabric (EP fabric) was investigated. The investigation results revealed that the tensile strength of the carcass of the conveyor belt was significantly affected by vulcanization temperature. The conveyor belt vulcanized at 160 °C for 35 min has shown the optimum tensile strength, which is 2.22% and 89.06% higher than the samples vulcanized at 140 °C and 220 °C for 35 min, respectively. Furthermore, the tensile strength and percentage elongation at break of conveyor belts vulcanized at 220 °C were almost destroyed regardless of the vulcanization duration.


2021 ◽  
pp. 073490412110563
Author(s):  
Manuel J Barros-Daza ◽  
Kray D Luxbacher ◽  
Brian Y Lattimer ◽  
Jonathan L Hodges

This article presents a conveyor belt fire classification model that allows for the determination of the most effective firefighting strategy. In addition, the effect of belt design parameters on the fire classification was determined. A methodology that involves the use of numerical simulations and artificial neural networks was implemented. An approach previously proposed for modeling fires over conveyor belts was used. With the objective of obtaining some required modeling input parameter and verifying the capacity of this approach to get realistic results, computational fluid dynamics model calibration and validation were carried out using experimental test results available in the literature. Results indicated that scenarios with belt positions closer to the mine roof and greater tunnel heights require a higher longitudinal air velocity to be attacked directly. Furthermore, the belt fire classification model provided by the artificial neural network had an accuracy around 95% when test scenarios were classified.


TEM Journal ◽  
2021 ◽  
pp. 1662-1667
Author(s):  
Peter Koščák ◽  
Ľubomír Ambriško ◽  
Karol Semrád ◽  
Marasová, Jr. Daniela ◽  
Vladimír Mitrík

The effect of the impact load exerted by the baggage impacting light baggage carousels may be manifested as mechanical damage to the carousel as a result of the stress-strain processes. In order to describe the phenomena related to the baggage impact, it is important to monitor the tensile strength of rubber carousels of light conveyor belts intended for the conveyance of baggage at airports. The output of the article is monitoring the mechanical load of the carousel, the comparison of the results thereof with the outputs of the CAE analysis, as well as the determination of the optimal material model and the approximation thereof to the experimental model.


2021 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Christine Bauer ◽  
Rebecca Wagner ◽  
Beate Orberger ◽  
Markus Firsching ◽  
Christiane Wagner ◽  
...  

X-ray transmission (XRT) and computed tomography (CT) was used on five samples from the Niaz porphyry Cu–Mo deposit in Iran, representing different alteration zones. Analysis of three-dimensional CT data revealed structural information and groups of elements with low, medium and high attenuation, which were assigned to minerals previously determined by scanning electron microscopy. Thus, the mineralization can be located, and the metal/waste ratio can be estimated, leading to more precise ore body modelling and process parameter determination. CT is useful for selected samples as it is time consuming. XRT can be used as real-time process on conveyor belts.


Sign in / Sign up

Export Citation Format

Share Document