potential glycosylation site
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

2017 ◽  
Vol 22 (8) ◽  
Author(s):  
Heli Harvala ◽  
Dan Frampton ◽  
Paul Grant ◽  
Jade Raffle ◽  
Ruth Bridget Ferns ◽  
...  

We report the molecular investigations of a large influenza A(H3N2) outbreak, in a season characterised by sharp increase in influenza admissions since December 2016. Analysis of haemagglutinin (HA) sequences demonstrated co-circulation of multiple clades (3C.3a, 3C.2a and 3C.2a1). Most variants fell into a novel subclade (proposed as 3C.2a2); they possessed four unique amino acid substitutions in the HA protein and loss of a potential glycosylation site. These changes potentially modify the H3N2 strain antigenicity.



2016 ◽  
Vol 196 ◽  
pp. 9-13 ◽  
Author(s):  
Hongxia Shao ◽  
Xiaoxiang Zhou ◽  
Zhonglei Fan ◽  
Zhimin Wan ◽  
Kun Qian ◽  
...  




2008 ◽  
Vol 89 (3) ◽  
pp. 716-721 ◽  
Author(s):  
Benedikta S. Haflidadóttir ◽  
Sigrídur Matthíasdóttir ◽  
Gudrún Agnarsdóttir ◽  
Sigurbjorg Torsteinsdóttir ◽  
Gudmundur Pétursson ◽  
...  

We have shown previously that a type-specific neutralization domain is located within a 39 aa sequence in the fourth variable domain of gp135 in visna/maedi virus. We now show that neutralizing antibodies detected early in infection are directed to this epitope, suggesting an immunodominant nature of this domain. Ten antigenic variants were previously analysed for mutations in this region, and all but one were found to be mutated. To assess the importance of these mutations in replication and neutralization, we reconstructed several of the mutations in an infectious molecular clone and tested the resulting viruses for neutralization phenotype and replication. Mutation of a conserved cysteine was shown to alter the neutralization epitope, whilst the replication kinetics in macrophages were unchanged. Mutations modulating potential glycosylation sites were found in seven of the ten antigenic variants. A frequently occurring mutation, removing a potential glycosylation site, had no effect on its own on the neutralization phenotype of the virus. However, adding an extra potential glycosylation site in the region resulted in antigenic escape. The results indicate that the conserved cysteine plays a role in the structure of the epitope and that glycosylation may shield the principal neutralization site.



1994 ◽  
Vol 304 (3) ◽  
pp. 917-922 ◽  
Author(s):  
R D Basco ◽  
L M Hernández ◽  
M D Muñox ◽  
I Olivero ◽  
E Andaluz ◽  
...  

Three exoglucanases (Exgs), ExgIa, ExgIb and Exg325, are secreted by Saccharomyces cerevisiae cells. They share a common protein portion with two potential glycosylation sites (sequons) but differ in the amount of N-linked carbohydrate [Basco, R.D., Muñoz, M.D., Hernández, L.M., Váquez de Aldana, C. and Larriba, G. (1993) Yeast 9, 221-234]. ExgIb contains two short oligosaccharides attached to asparagines (Asn) 165 and 325 of the primary translation product [Hernández, L.M., Olivero, I., Alvarado, E. and Larriba, G. (1992) Biochemistry 31, 9823-9831]. Exg325 carries a single, short oligosaccharide bound to Asn325 whereas ExgIa has at least one large oligosaccharide, since it has not been produced by mutant mnn9. To address the question of the origin of ExgIa, both sequons were individually mutated by substituting Gln for Asn. An ExgIa-like isoenzyme was still secreted by mutant Exg165 but not by mutant Exg325. Additional studies on sequential deglycosylation of ExgIa with endo-beta-N-acetylglucosaminidase H (endo H), the susceptibility of both oligosaccharides to the endoglycosidase, and analysis of the presence of GlcNAc at both asparagine residues after total deglycosylation with endo H, indicated that ExgIa contained two oligosaccharides, a short one bound to Asn165 and a large one bound to Asn325, and, accordingly, originated from ExgIb. The elongation of the second oligosaccharide did not result in a higher stability towards thermal inactivation or unfolding, or in an increased resistance to proteases as compared with ExgIb; however, the affinity of the enzyme towards laminarin decreased by 50%. This site-specific elongation occurred in the oligosaccharide that was less susceptible to endo H, indicating that these properties are determined by different conformational constraints.



Sign in / Sign up

Export Citation Format

Share Document