false alarm ratio
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Makenzie J. Krocak ◽  
Matthew D. Flournoy ◽  
Harold E. Brooks

AbstractIncreasing tornado warning skill in terms of the probability of detection and false alarm ratio remains an important operational goal. Although many studies have examined tornado warning performance in a broad sense, less focus has been placed on warning performance within sub-daily convective events. In this study, we use the NWS tornado verification database to examine tornado warning performance by order-of-tornado within each convective day. We combine this database with tornado reports to relate warning performance to environmental characteristics. On convective days with multiple tornadoes, the first tornado is warned significantly less often than the middle and last tornadoes. More favorable kinematic environmental characteristics, like increasing 0–1-km shear and storm-relative helicity, are associated with better warning performance related to the first tornado of the convective day. Thermodynamic and composite parameters are less correlated to warning performance. During tornadic events, over half of false alarms occur after the last tornado of the day decays, and false alarms are twice as likely to be issued during this time than before the first tornado forms. These results indicate that forecasters may be better “primed” (or more prepared) to issue warnings on middle and last tornadoes of the day, and must overcome a higher threshold to warn on the first tornado of the day. To overcome this challenge, using kinematic environmental characteristics and intermediate products on the watch-to-warning scale may help.


Author(s):  
Makenzie J. Krocak ◽  
Harold E. Brooks

AbstractWhile many studies have looked at the quality of forecast products, few have attempted to understand the relationship between them. We begin to consider whether or not such an influence exists by analyzing storm-based tornado warning product metrics with respect to whether they occurred within a severe weather watch and, if so, what type of watch they occurred within.The probability of detection, false alarm ratio, and lead time all show a general improvement with increasing watch severity. In fact, the probability of detection increased more as a function of watch-type severity than the change in probability of detection during the time period of analysis. False alarm ratio decreased as watch type increased in severity, but with a much smaller magnitude than the difference in probability of detection. Lead time also improved with an increase in watch-type severity. Warnings outside of any watch had a mean lead time of 5.5 minutes, while those inside of a particularly dangerous situation tornado watch had a mean lead time of 15.1 minutes. These results indicate that the existence and type of severe weather watch may have an influence on the quality of tornado warnings. However, it is impossible to separate the influence of weather watches from possible differences in warning strategy or differences in environmental characteristics that make it more or less challenging to warn for tornadoes. Future studies should attempt to disentangle these numerous influences to assess how much influence intermediate products have on downstream products.


2021 ◽  
Author(s):  
Jean-François Ribaud ◽  
Martial Haeffelin ◽  
Jean-Charles Dupont ◽  
Marc-Antoine Drouin ◽  
Felipe Toledo ◽  
...  

Abstract. An improved version of the near-real time decision tool PARAFOG (PFG2) is presented to retrieve pre-fog alert levels and to discriminate between radiation (RAD) and stratus lowering (STL) fog situations. PFG2 has two distinct modules to monitor the physical processes involved in RAD and STL fog formation and is evaluated at European sites. The modules are based on innovative fuzzy logic algorithms to retrieve fog alert levels (low, moderate, high) specific to RAD/STL conditions, minutes to hours prior to fog onset. The PFG2-RAD module assesses also the thickness of the fog. Both the PFG2-RAD and PFG2-STL modules rely on the combination of visibility observations and automatic lidar and ceilometer (ALC) measurements. The overall performance of the PFG2-RAD and -STL modules is evaluated based on 9 years of measurements at the SIRTA observatory near Paris and up to two fog seasons at the Paris-Roissy, Vienna, Munich and Zurich airports. At all sites, pre-fog alert levels retrieved by PFG2 are found to be consistent with the local weather analysis. The advanced PFG2 algorithm performs with a hit rate of about 100 % for both considered fog types, and presents a false alarm ratio on the order of 10 % (30 %) for RAD (STL) fog situations. Finally, the first high alerts that result in a subsequent fog event are found to occur for periods of time ranging from −120 minutes to fog onset, with first high alerts occurring earlier for RAD than STL cases.


2020 ◽  
Vol 21 (1) ◽  
pp. 13-21
Author(s):  
Nayla Alvina Rahma ◽  
Jaka Anugrah Ivanda Paski

Penelitian ini bertujuan untuk mengetahui perbedaan hasil prediksi hujan WRF-3DVAR asimilasi data radar dengan menggunakan teknik warm start (spin-up 12 jam) dan cold start (tanpa spin-up). Kejadian hujan yang dianalisis adalah kejadian hujan lebat tanggal 19-20 Januari 2019 di wilayah Surabaya dan sekitarnya. Data yang digunakan untuk simulasi adalah data Global Forescast System (GFS) dan data reflektivitas radar cuaca BMKG Surabaya produk Constant Altitude Plan Position Indicator (CAPPI). Analisis dilakukan dengan membandingan kondisi awal model pada parameter suhu dan kelembaban udara untuk mengetahui efek dari metode asimilasi data. Uji keandalan model dilakukan dengan melakukan verifikasi dikotomi (hujan/tidak hujan) hasil luaran model WRF dengan data hujan di 4 titik pengamatan, yaitu di Stasiun meteorologi Juanda, Stasiun meteorologi Perak, Stasiun Klimatologi Karangploso, dan Stasiun Geofisika Tretes. Hasil menunjukkan bahwa asimilasi data radar dengan mode cold start mempunyai hasil yang lebih baik dibandingkan dengan warm start, yang ditandai dengan lebih tingginya nilai Probability of Detection (POD) dan lebih rendahnya False Alarm Ratio (FAR). Asimilasi data dengan menggunakan mode cold start memiliki performa yang lebih baik dalam mendeteksi curah hujan per jam dengan ambang batas >1 mm dan >5 mm, sedangkan curah hujan >10 mm per jam lebih baik diprediksi menggunakan mode warm start.


2020 ◽  
Vol 70 (3) ◽  
pp. 17-23
Author(s):  
Zvonko Radosavljević ◽  
Dejan Ivković

Each radar has the function of surveillance of certain areas of interest. In particular, the radar also has the function of tracking moving targets in that territory with some probability of detection, which depends on the type of detector. Constant false alarm ratio (CFAR) is a very commonly used detector. Changing the probability of target detection can directly affect the quality of tracking the moving targets. The paper presents the theoretical basis of the influence of CFAR detectors on the quality of tracking, as well as an approach to the selection of CFAR detectors, CATM CFAR, which enables better monitoring by the Interacting Multiple Model (IMM) algorithm with two motion models. Comparative analysis of CA and CATM algorithm realized by numerical simulations has shown that CATM CFAR gives less tracking error with proportionally the same computer resources.


2019 ◽  
Vol 23 (8) ◽  
pp. 1369-1372 ◽  
Author(s):  
Zhen Dai ◽  
Pingbo Wang ◽  
Hongkai Wei ◽  
Yuanchao Xu

2019 ◽  
Vol 34 (4) ◽  
pp. 1017-1034 ◽  
Author(s):  
Alexandra K. Anderson-Frey ◽  
Yvette P. Richardson ◽  
Andrew R. Dean ◽  
Richard L. Thompson ◽  
Bryan T. Smith

Abstract The southeastern United States has become a prime area of focus in tornado-related literature due, in part, to the abundance of tornadoes occurring in high-shear low-CAPE (HSLC) environments. Through this analysis of 4133 tornado events and 16 429 tornado warnings in the southeastern United States, we find that tornadoes in the Southeast do indeed have, on average, higher shear and lower CAPE than tornadoes elsewhere in the contiguous United States (CONUS). We also examine tornado warning skill in the form of probability of detection (POD; percent of tornadoes receiving warning prior to tornado occurrence) and false alarm ratio (FAR; percent of tornado warnings for which no corresponding tornado is detected), and find that, on average, POD is better and FAR is worse for tornadoes in the Southeast than for the CONUS as a whole. These measures of warning skill remain consistent even when we consider only HSLC tornadoes. The Southeast also has nearly double the CONUS percentage of deadly tornadoes, with the highest percentage of these deadly tornadoes occurring during the spring, the winter, and around local sunset. On average, however, the tornadoes with the lowest POD also tend to be those that are weakest and least likely to be deadly; for the most part, the most dangerous storms are indeed being successfully warned.


2018 ◽  
Vol 33 (6) ◽  
pp. 1501-1511 ◽  
Author(s):  
Harold E. Brooks ◽  
James Correia

Abstract Tornado warnings are one of the flagship products of the National Weather Service. We update the time series of various metrics of performance in order to provide baselines over the 1986–2016 period for lead time, probability of detection, false alarm ratio, and warning duration. We have used metrics (mean lead time for tornadoes warned in advance, fraction of tornadoes warned in advance) that work in a consistent way across the official changes in policy for warning issuance, as well as across points in time when unofficial changes took place. The mean lead time for tornadoes warned in advance was relatively constant from 1986 to 2011, while the fraction of tornadoes warned in advance increased through about 2006, and the false alarm ratio slowly decreased. The largest changes in performance take place in 2012 when the default warning duration decreased, and there is an apparent increased emphasis on reducing false alarms. As a result, the lead time, probability of detection, and false alarm ratio all decrease in 2012. Our analysis is based, in large part, on signal detection theory, which separates the quality of the warning system from the threshold for issuing warnings. Threshold changes lead to trade-offs between false alarms and missed detections. Such changes provide further evidence for changes in what the warning system as a whole considers important, as well as highlighting the limitations of measuring performance by looking at metrics independently.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yong Cheng ◽  
Qiuyue Liu ◽  
Jun Wang ◽  
Shaohua Wan ◽  
Tariq Umer

Because the existing approaches for diagnosing sensor networks lead to low precision and high complexity, a new fault detection mechanism based on support vector regression and neighbor coordination is proposed in this work. According to the redundant information about meteorological elements collected by a multisensor, a fault prediction model is built using a support vector regression algorithm, and it achieves residual sequences. Then, the node status is identified by mutual testing among reliable neighbor nodes. Simulations show that when the sensor fault probability in wireless sensor networks is 40%, the detection accuracy of the proposed algorithm is over 87%, and the false alarm ratio is below 7%. The detection accuracy is increased by up to 13%, in contrast to other algorithms. This algorithm not only reduces the communication to sensor nodes but also has a high detection accuracy and a low false alarm ratio. The proposed algorithm is suitable for fault detection in meteorological sensor networks with low node densities and high failure ratios.


2018 ◽  
Vol 10 (8) ◽  
pp. 1278 ◽  
Author(s):  
Jean-François Rysman ◽  
Giulia Panegrossi ◽  
Paolo Sanò ◽  
Anna Marra ◽  
Stefano Dietrich ◽  
...  

This paper describes a new algorithm that is able to detect snowfall and retrieve the associated snow water path (SWP), for any surface type, using the Global Precipitation Measurement (GPM) Microwave Imager (GMI). The algorithm is tuned and evaluated against coincident observations of the Cloud Profiling Radar (CPR) onboard CloudSat. It is composed of three modules for (i) snowfall detection, (ii) supercooled droplet detection and (iii) SWP retrieval. This algorithm takes into account environmental conditions to retrieve SWP and does not rely on any surface classification scheme. The snowfall detection module is able to detect 83% of snowfall events including light SWP (down to 1 × 10−3 kg·m−2) with a false alarm ratio of 0.12. The supercooled detection module detects 97% of events, with a false alarm ratio of 0.05. The SWP estimates show a relative bias of −11%, a correlation of 0.84 and a root mean square error of 0.04 kg·m−2. Several applications of the algorithm are highlighted: Three case studies of snowfall events are investigated, and a 2-year high resolution 70°S–70°N snowfall occurrence distribution is presented. These results illustrate the high potential of this algorithm for snowfall detection and SWP retrieval using GMI.


Sign in / Sign up

Export Citation Format

Share Document