formation potential
Recently Published Documents


TOTAL DOCUMENTS

564
(FIVE YEARS 174)

H-INDEX

42
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Aristeidis Voliotis ◽  
Mao Du ◽  
Yu Wang ◽  
Yunqi Shao ◽  
M. Rami Alfarra ◽  
...  

Abstract. A comprehensive investigation of the photochemical secondary organic aerosol (SOA) formation and transformation in mixtures of anthropogenic (o-cresol) and biogenic (α-pinene and isoprene) volatile organic compound (VOC) precursors in the presence of NOx and inorganic seed particles was conducted. Initial iso-reactivity was used to enable direct comparison across systems, adjusting the initial reactivity of the systems towards the assumed dominant oxidant (OH). Comparing experiments conducted in single precursor systems at various initial reactivity levels (referenced to a nominal base case VOC reactivity) and their binary and ternary mixtures, we show that the molecular interactions from the mixing of the precursors can be investigated and discuss limitations in their interpretation. The observed average SOA yields in descending order were found for the α-pinene (32 ± 7 %), α-pinene/o-cresol (28 ± 9 %), α-pinene at ½ initial reactivity (21 ± 5 %), α-pinene/isoprene (16 ± 1 %), α-pinene at ⅓ initial reactivity (15 ± 4 %), o-cresol (13 ± 3 %), α-pinene/o-cresol/isoprene (11 ± 4%), o-cresol at ½ initial reactivity (11 ± 3 %), o-cresol/isoprene (6 ± 2 %) and isoprene systems (0 ± 0 %). We find a clear suppression of the SOA yield from α-pinene when it is mixed with isoprene, whilst the addition of isoprene to o-cresol may enhance the mixture’s SOA formation potential, however, the difference was too small to be unequivocal. The α-pinene/o-cresol system yield appeared to be increased compared to that calculated based on the additivity, whilst in the α-pinene/o-cresol/isoprene system the measured and predicted yield were comparable. However, in mixtures where more than one precursor contributes to the SOA mass it is unclear whether changes in the SOA formation potential are attributable to physical or chemical interactions, since the reference basis for the comparison is complex. Online and offline chemical composition and SOA particle volatility, water uptake and “phase” behaviour measurements that were used to interpret the SOA formation and behaviour are introduced and detailed elsewhere.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 57
Author(s):  
Hailin Wang ◽  
Song Xue ◽  
Run Hao ◽  
Li Fang ◽  
Lei Nie

With the rapid development of metal packaging, volatile organic compounds (VOCs) emissions from the packaging processes are also increasing gradually. It is necessary to research the characteristics of VOCs emissions from such important industrial source and its impact on the possible ozone formation. In this research, three typical metal packaging plants were selected, VOCs emission characteristics were investigated, and their ozone formation potential were evaluated by using maximum incremental reactivity (MIR) coefficient method. The results showed that the VOCs emission characteristics of the selected targets were obviously different. VOCs emitted from plant A and B were mainly oxygenated hydrocarbons, which accounted for 85.02% and 43.17%, respectively. Olefins (62.75%) were the main species of plant C. 2-butanone (82.67%), methylene chloride (23.00%) and ethylene (36.67%) were the major species of plant A, plant B and plant C, respectively. The OFP (ozone formation potential) value of plant B (120.49 mg/m3) was much higher than those values of plant A (643.05 mg/m3) and plant C (3311.73 mg/m3), in which para-xylene, meta-xylene, acetaldehyde and ethylene were the main contributors. The difference in OFP values indicated that water-based ink and water-based coatings should be recommended for large scale application due to less VOCs emission and low ozone formation contribution.


Sign in / Sign up

Export Citation Format

Share Document