direct beam
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 7)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Matthew S. Norgren ◽  
John Wood ◽  
K. Sebastian Schmidt ◽  
Bastiaan van Diedenhoven ◽  
Snorre A. Stamnes ◽  
...  

Abstract. This study develops the use of spectral total and diffuse irradiance measurements, made from a prototype hyperspectral total-diffuse Sunshine Pyranometer (SPN-S), to retrieve layer fine-mode aerosol (τaer) and total optical depths from airborne platforms. Additionally, we use spectral analysis in an attempt to partition the total optical depth it into its τaer and cirrus cloud optical depth (τcld) components in the absence of coarse-mode aerosols. Two retrieval methods are developed: one leveraging information in the diffuse irradiance, and the other using spectral characteristics of the transmitted direct beam, with each approach best suited for specific cloud and aerosol conditions. SPN-S has advantages over traditional sun-photometer systems including no moving parts and a low cost. However, a significant drawback of the instrument is that it is unable to measure the direct beam irradiance as accurately as sun-photometers. To compensate for the greater measurement uncertainty of the radiometric irradiances these retrieval techniques employ ratioed inputs or spectral information to reduce output uncertainty. This analysis uses irradiance measurements from SPN-S and the Solar Spectral Flux Radiometer (SSFR) aboard the National Aeronautics and Space Administration’s (NASA) P-3 aircraft during the 2018 deployment of the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) campaign and the 2019 Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex) mission to quantify above-aircraft cirrus τcld and derive vertical profiles of layer τaer. Validation of the τaer retrieval is accomplished by comparison with collocated measurements of direct solar irradiance made by the Sky-Scanning Sun-Tracking Atmospheric Research (4STAR) and in situ measurements of aerosol optical depth. For the aggregated 2018 ORACLES results, regression between the SPN-S based method and sun-photometer τaer values yield a slope of 0.96 with an R2 of 0.96, while the root-mean-square error (RMSE) is 3.0 × 10−2. When comparing the retrieved τaer to profiles of integrated in situ measurements of optical extinction, the slope, R2, and RMSE values for ORACLES are 0.90, 0.96, 3.4 × 10−2, and for CAMP2Ex are 0.94, 0.97, 3.4 × 10−2 respectively. This paper is a demonstration of methods for deriving cloud and aerosol optical properties in environments where both atmospheric constituents may be present. With improvements to the low-cost SPN-S radiometer instrument, it may be possible to extend these methods to a broader set of sampling applications, such as ground-based settings.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Paweł Świt ◽  
Marco Gargano ◽  
Julio M. del Hoyo-Meléndez

AbstractMicrofading testing allows to evaluate the sensitivity to light of a specific artwork. Characterization of the illumination spot is important to determine its shape, dimensions, light distribution, and intensity in order to limit and account for possible damage. In this research the advantages and disadvantages of several methods used to determine the beam shape and intensity profiles are described with the aim of providing various options to microfading researchers interested in characterizing their irradiation spots. Conventional and imaging methods were employed and are compared in terms of their accuracy, cost, reliability, and technical features. Conventional methods consisted of an aperture technique using aluminium foil and four different materials namely stainless steel, silicon, muscovite, and Teflon used as sharp edges. The imaging methods consisted of digital photography of illumination spot, direct beam measurement using a CMOS camera, and direct beam measurement using a laser beam profiler. The results show that both conventional and imaging methods provide beam width measurements, which are in satisfactory agreement within experimental error. The two best methods were direct measurement of the beam using a CMOS camera and sharp-edge procedure. MFT illumination beam with a CMOS camera followed by a determination of the beam diameter using a direct method, more specifically one involving a sharp-edge technique.


Author(s):  
Cícero Manoel dos Santos ◽  
João Francisco Escobedo ◽  
Amaury de Souza ◽  
Maurício Bruno Prado da Silva ◽  
Flavio Aristone

Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3471
Author(s):  
Avi Aronescu ◽  
Joseph Appelbaum

Photovoltaic (PV) solar fields are deployed with multiple rows. The second and subsequent rows are subject to shading and masking by the rows in front. The direct beam incident radiation on the second row is affected by shading and the diffuse incident radiation is affected by masking, expressed by sky view factor. Hence, all rows, besides the first one, receive lower incident radiation. The design of PV fields must take into account the decrease in the incident radiation caused by these two effects. The paper investigates by simulation the annual incident diffuse, direct beam and global radiation on the first and on the second row for optimized PV fields at two sites: Tel Aviv, Israel, with low diffuse component, and Lindenberg–Germany monitoring station, with a high diffuse component. The study emphasizes the importance of the diffuse incident radiation on the energy loss of the PV field. The percentage annual global energy loss due to shading and masking on the second row amounts to 1.49% in Tel Aviv and 0.46% in Lindenberg. Isotropic and anisotropic diffuse models were considered. The calculated diffuse incident energy for the isotropic model is lower than the values for anisotropic model by about 8% in Tel Aviv and 3.75% in Lindenberg.


Optik ◽  
2019 ◽  
Vol 184 ◽  
pp. 35-39
Author(s):  
Lixiang Han ◽  
Mingming Hao ◽  
Lili Tao ◽  
Jingbo Li

2019 ◽  
Vol 132 ◽  
pp. 221-232 ◽  
Author(s):  
Ji-Long Chen ◽  
Lei He ◽  
Qiao Chen ◽  
Ming-Quan Lv ◽  
Hong-Lin Zhu ◽  
...  
Keyword(s):  

2018 ◽  
Vol 8 (11) ◽  
pp. 2283 ◽  
Author(s):  
Xinghui Li ◽  
Haiou Lu ◽  
Qian Zhou ◽  
Guanhao Wu ◽  
Kai Ni ◽  
...  

In this paper, an orthogonal type two-axis Lloyd’s mirror interference lithography technique was employed to fabricate two-dimensional planar scale gratings for surface encoder application. The two-axis Lloyd’s mirror interferometer is composed of a substrate and two reflective mirrors (X- and Y-mirrors), which are placed edge by edge perpendicularly. An expanded and collimated beam was divided into three beams by this interferometer, a direct beam and two reflected beams, projected onto the substrate, X- and Y-mirrors, respectively. The unexpected beam sections having twice reflected off the mirrors were blocked by a filter. The remaining two reflected beams interfered with the direct beam on the substrate, generating perpendicularly cross patterns thus forming two-dimensional scale gratings. However, the two reflected beams undesirably interfere with each other and generate a grating pattern along 45-degree direction against the two orthogonal direction, which influence the pattern uniformity. Though an undesired grating pattern can be eliminated by polarization modulation with introduction of waveplates, spatial configuration of waveplates inevitably downsized the eventual grating, which is a key parameter for grating interferometry application. For solving this problem, theoretical and experimental study was carefully carried out to evaluate the fabrication quality with and without polarization modulation. Two-dimensional scale gratings with a 1 μm period in X- and Y-directions were achieved by using the constructed experiment system with a 442 nm He-Cd laser source. Atomic force microscopy (AFM) images and the result of diffraction performances demonstrated that the orthogonal type two-axis Lloyd’s mirror interferometer can stand a small order undesired interference, that is, a degree of orthogonality between two reflected beams, denoted by γ, no larger than a nominal value of 0.1.


2018 ◽  
Vol 30 (3) ◽  
pp. 032017 ◽  
Author(s):  
L. Rizzo ◽  
K. J. Duncan ◽  
J. L. Zunino ◽  
J. F. Federici

Sign in / Sign up

Export Citation Format

Share Document