multiaxial stress
Recently Published Documents


TOTAL DOCUMENTS

313
(FIVE YEARS 37)

H-INDEX

27
(FIVE YEARS 2)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 157
Author(s):  
Timothy Ngeru ◽  
Dzhem Kurtulan ◽  
Ahmet Karkar ◽  
Stefanie Hanke

multiaxial stress states frequently occur in technical components and, due to the multitude of possible load situations and variations in behaviour of different materials, are to date not fully predictable. This is particularly the case when loads lie in the plastic range, when strain accumulation, hardening and softening play a decisive role for the material reaction. This study therefore aims at adding to the understanding of material behaviour under complex load conditions. Fatigue tests conducted under cyclic torsional angles (5°, 7.5°, 10° and 15°), with superimposed axial static compression loads (250 MPa and 350 MPa), were carried out using smooth specimens at room temperature. A high nitrogen alloyed austenitic stainless steel (nickel free), was employed to determine not only the number of cycles to failure but particularly to aid in the understanding of the mechanical material reaction to the multiaxial stresses as well as modes of crack formation and growth. Experimental test results indicate that strain hardening occurs under the compressive strain, while at the same time cyclic softening is observable in the torsional shear stresses. Furthermore, the cracks’ nature is unusual with multiple branching and presence of cracks perpendicular in direction to the surface cracks, indicative of the varying multiaxial stress states across the samples’ cross section as cross slip is activated in different directions. In addition, it is believed that the static compressive stress facilitated the Stage I (mode II) crack to change direction from the axial direction to a plane perpendicular to the specimen’s axis.


Author(s):  
Daniel Fuchs ◽  
Sascha Rommel ◽  
Thomas Tobie ◽  
Karsten Stahl

Modern high-strength gears have to satisfy many requirements, such as improved tooth root bending strength. The process of shot-peening is correlated to the introduction of compressive residual stresses in the surface layer of a gear to achieve a higher tooth root bending strength. However, due to the compressive residual stresses fisheye failures can occur and can have a determining effect on the endurance of high-strength gears. By preventing such failures, it should be possible to increase further the tooth root bending strength of high-strength gears. However, this requires a deeper understanding of the crack initiation and propagation processes. Especially the unique multiaxial stress condition in the tooth root fillet of a gear could influence the crack area characteristics significantly. Though, in the literature there is no proper characterization of crack area characteristics in the tooth root fillet of gears in detail, so far. Furthermore, in previous work a model approach for the evaluation of the tooth root bending strength of gears was presented, which is based on the results of Murakami. A first comparison with experimental data showed a basic applicability of the model approach on gears. However, the derived model approach showed some room for improvement. Questions arose as to whether the approach is really fully applicable to gears, whether further modifications are needed, or whether further extension is even practical, since the fisheye fracture characteristics of gears might differ significantly from those of standard specimens. The aim of this paper is therefore to present an extensive in-depth analysis of the crack area characteristics in the event of tooth root fracture damages caused by a fisheye failure in high-strength gears. Furthermore, a case study is used to verify whether a detailed evaluation of the characteristics of non-metallic inclusions leads to more accurate results of the model approach.


2021 ◽  
Vol 121 ◽  
pp. 105168
Author(s):  
Zahid Mehmood ◽  
Asad Hameed ◽  
Shakeel Safdar ◽  
Faisal Siddiqui

2020 ◽  
Vol 206 ◽  
pp. 59-74
Author(s):  
Guosheng Wang ◽  
Dechun Lu ◽  
Xin Zhou ◽  
Yufei Wu ◽  
Xiuli Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document