sewer pipes
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 107)

H-INDEX

21
(FIVE YEARS 7)

2022 ◽  
Vol 204 ◽  
pp. 111999
Author(s):  
Hanting Wu ◽  
Yangrui Huang ◽  
Lei Chen ◽  
Yingjie Zhu ◽  
Huaizheng Li

2022 ◽  
Vol 13 (1) ◽  
pp. 04021065
Author(s):  
Pengpeng Ni ◽  
Lin Shen ◽  
Guoxiong Mei ◽  
Pengming Jiang

2021 ◽  
Vol 8 (6) ◽  
pp. 923-927
Author(s):  
Akram K. Mohammed ◽  
Raad H. Irzooki ◽  
Asmaa A. Jamel ◽  
Wesam S. Mohammed-Ali ◽  
Suhad S. Abbas

The critical depth and normal depth computation are essential for hydraulic engineers to understanding the characteristics of varied flow in open channels. These depths are fundamental to analyze the flow for irrigation, drainage, and sewer pipes. Several explicit solutions to calculate critical and normal depths in different shape open channels were discovered over time. Regardless of the complexity of using these explicit solutions, these formulas have a significant error percentage compared to the exact solution. Therefore, this research explicitly calculates the normal and critical depth in circular channels and finds simple, fast, and accurate equations. First, the dimensional analysis was used to propose an analytical equation for measuring the circular channels' critical and normal depths. Then, regression analysis has been carried for 2160 sets of discharge versus critical and normal depths data in a circular open channel. The results show that this study's proposed equation for measuring the circular channels' critical and normal depths overcomes the error percentage in previous studies. Furthermore, the proposed equation offers efficiency and precision compared with other previous solutions.


2021 ◽  
Vol 43 (s1) ◽  
pp. 532-547
Author(s):  
Patrycja Stanowska ◽  
Józef Dziopak ◽  
Daniel Słyś ◽  
Mariusz Starzec

Abstract The paper focuses on the possibilities of rainwater flow control in an innovative rainwater system which is equipped with a retention canals system. Sewage retention canal is a modern solution that provides effective retention of excess rainwater by using a capacity of sewer pipes and manholes. The retention is possible by using special damming partitions which have flow openings. The hydraulic working of the traditional rainwater system and the innovative rainwater system were compared with each other. The analysis was based on the results obtained from simulations using hydrodynamic modeling. Maximum possible values of rainwater outflow intensity from outlet nodes for the traditional rainwater system and the innovative rainwater system were discussed. On the basis of the analysis it was shown that the innovative rainwater system outweighs the classic rainwater one. It discharges two functions: transports and simultaneously retains excess rainwater in canals.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3168
Author(s):  
Marek Sokáč ◽  
Yvetta Velísková

Experiments focused on pollution transport and dispersion phenomena in conditions of low flow (low water depth and velocities) in sewers with bed sediment and deposits are presented. Such conditions occur very often in sewer pipes during dry weather flows. Experiments were performed in laboratory conditions. To simulate real hydraulic conditions in sewer pipes, sand of fraction 0.6–1.2 mm was placed on the bottom of the pipe. In total, we performed 23 experiments with 4 different thicknesses of sand sediment layers. The first scenario is without sediment, the second is with sediment filling 3.4% of the pipe diameter (sediment layer thickness = 8.5 mm), the third scenario represents sediment filling 10% of the pipe diameter (sediment layer thickness = 25 mm) and sediment fills 14% of the pipe diameter (sediment layer thickness = 35 mm) in the last scenario. For each thickness of the sediment layer, a set of tracer experiments with different flow rates was performed. The discharge ranges were from (0.14–2.5)·10−3 m3·s−1, corresponding to the range of Reynolds number 500–18,000. Results show that in the hydraulic conditions of a circular sewer pipe with the occurrence of sediment and deposits, the value of the longitudinal dispersion coefficient Dx decreases almost linearly with decrease of the flow rate (also with Reynolds number) to a certain limit (inflexion point), which is individual for each particular sediment thickness. Below this limit the value of the dispersion coefficient starts to rise again, together with increasing asymmetricity of the concentration distribution in time, caused by transient (dead) storage zones.


Modelling ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 467-481
Author(s):  
David Khani ◽  
Yeo Howe Lim ◽  
Ahmad Malekpour

This paper aimed to justify the performance of a non-oscillatory TPA-based model proposed by the authors for capturing transient mix flow in sewer systems consisting of a variety of pipe shapes. The model utilizes a first-order Godunov Finite volume numerical scheme in which a Harten–Lax–van Leer (HLL) Riemann solver was used for calculating the fluxes at the cells’ boundaries. The spurious numerical solution associated with the transient mix flow analysis is suppressed by enhancing the numerical viscosity of the scheme when the pipe pressurization is imminent. Due to the lack of experimental data for systems with pipe shapes other than circular and rectangular, a hypothetical pipe system for which analytical solutions exist was employed to verify the model performance. The results reveal that for all pipe shapes considered, the model provides oscillation-free solutions even at a high acoustic speed of 1400 m/s. It is also observed that the numerical results are in perfect agreement with the analytical solution. The obtained results conclude that the proposed model can be utilized to capture transient responses of sewer systems with any pipe shape.


Sign in / Sign up

Export Citation Format

Share Document