load effects
Recently Published Documents


TOTAL DOCUMENTS

671
(FIVE YEARS 137)

H-INDEX

40
(FIVE YEARS 4)

2022 ◽  
pp. 380-403
Author(s):  
Onur Dönmez

Learners struggle to keep up with the cognitive demands of online learning. Terms referring to the drain of learners' cognitive resources such as “Zoom fatigue” have been around for a while. The instructional design of online courses must consider cognitive factors more than ever. The cognitive load theory (CLT) has major underpinnings for designing online courses. The CLT seeks to optimize the learning process by considering the demands of the learning tasks (intrinsic cognitive load), design of the learning material (extrinsic cognitive load), and activation of learners' cognitive resources (germane cognitive load). Several principles have been proposed to manage each cognitive load type. This chapter will begin by outlining the CLT. Then, well-defined cognitive load effects will be introduced, along with evidence from the field. Next, new frontiers of the theory will be presented. Finally, implications of the cognitive load effects for online learning practices will be discussed.


Author(s):  
Pedro Henrique Preto Facholli ◽  
André Teófilo Beck

abstract: The design of reinforced concrete (RC) frames is made on a member-by-member basis. Similarly, in the literature, the reliability of RC beams and columns is often studied in isolation from the rest of the structure. Yet, in the construction of regular frames, symmetry and regularity are often exploited, resulting in the same design for each element type. This is despite of different load effects on different parts of the structure, which leads to significant variations in the failure probability of the elements. Hence, in this paper, we investigate the reliability of members and the distribution of load effects in regular RC frame buildings, considering intact and column loss cases, where symmetry is lost. Results show that the ratios of normal-to-bending loads change significantly along building height, and this has a significant impact on reliability of individual columns.


2022 ◽  
Vol 251 ◽  
pp. 113491
Author(s):  
Aliu Abdul-Hamid ◽  
Abass Braimah ◽  
Fred Tai
Keyword(s):  

2021 ◽  
Vol 16 (2) ◽  
Author(s):  
Baurice Sylvain Sadjiep Tchuigwa ◽  
Jan Krmela ◽  
Jan Pokorny

This paper is a literature review about tire component requirements for innovation in tire construction. Herein are pointed out essential aspects expected in Tires’ structures from the mechanical point of view for future development of a realistic model for advanced simulation of tires (in miscellaneous operating conditions) and innovation in tire mechanics. Being composite structures, tires are made of many elements chosen with delicacy due to their intrinsic physical properties in regards to load effects. Since tires' mechanical behavior is directly linked to the parameters of its constituents (carcass, steel cord belt, and textile cord belt, namely), it is thereof imperative to grasp some solid pieces of knowledge about. Wherefore, the current contribution explored the mechanical requirements to be taken into account in the matrix (rubber) and reinforcements (steel cords and textile cords) for determining the inputs enabling to build up an accurate and simple computer model for improving tires simulation.


Author(s):  
H Jafaryeganeh ◽  
C Guedes Soares

A panel cutting technique is developed for automatic modification of an initial mesh of a ship hull used for hydrodynamic computations leading to improved meshes for the prediction of wave induced vertical load effects. The technique can provide a model with divided panels in any defined position regardless of the initial discretization of the body. The applications of the provided technique include panel distinction and division in predetermined positions, generation of finer mesh based on the initial coarser model of meshes and improvement of vertical load prediction in predetermined positions. The method is applied for case studies of a barge, shuttle tanker and frigate to depict various applications. Finally, the hydrostatic and hydrodynamic vertical shear forces are calculated for two models of initial and modified panels of well-known frigate 5415. The results are compared for the sections alongside the ship and accuracy of load integration is shown for predetermined sections.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012078
Author(s):  
J Bokomlasko ◽  
J Mandula

Abstract Asphalt mixture is a building material with many advantages. Therefore, it is most used in road construction. If the asphalt mixture is laid with the prescribed technology, it can withstand load effects to long-term. It is necessary to take samples that will be subjected to laboratory measurements. There are several laboratory test, for example measurement thickness of the asphalt mixture layers, the aggregate fraction, quantity of binder in the mixture, determination of air void in asphalt mixture layers. Samples taken directly from the construction site are subjected to laboratory tests. This article focuses on one of the laboratory tests and it is determination of air void in asphalt mixture layers. The determination of air void in asphalt mixture layers is test in detail, because this effect has influence on the deformation properties of asphalt mixture layers. Therefore, it was necessary to model of air void in asphalt mixture layers with different degrees air void. On this purpose was use program Abaqus. The results were plotted. This graphs showed that increasing the air void in asphalt mixture layers has effect on the expansion of deformations. This can lead to faster pavement degradation.


Sign in / Sign up

Export Citation Format

Share Document