adaptive particle swarm optimization
Recently Published Documents


TOTAL DOCUMENTS

379
(FIVE YEARS 81)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Vol 18 (23) ◽  
pp. 712
Author(s):  
Elmostafa Chetouani ◽  
Youssef Errami ◽  
Abdellatif Obbadi ◽  
Smail Sahnoun

We proposed an analysis of a hybrid control of active and reactive power for a doubly-fed induction generator for variable velocity wind energy injection into the electrical grid using a combination of adaptive particle swarm optimization and integral backstepping control in this paper. The stability of the Lyapunov function is utilized to establish the latter. Six controllers are developed as part of the proposed control process: The first is concerned with the maximum PowerPoint. The stator powers are managed by the second and third regulators, which are performed by the optimal PI controller using adaptive particle swarm optimization. The DC link voltage is kept constant by the fourth controller. The fifth and sixth are employed to pilot the rotor powers and ensure that the power factor is maintained to 1. These three controllers are synthesized by using the nonlinear integral backstepping control. These control strategies show excellent results compared to field-oriented control under a variable wind speed profile and changing generator settings in a Matlab/Simulink environment. According to the test findings, using integral backstepping, the overshoot of the DC-link voltage is decreased by 99.16 %. Furthermore, the particle swarm optimization reduces its time to reach the equilibrium state to 4.3 m s and demonstrates robustness against parameter generator changes. HIGHLIGHTS The regulation of the produced power by the wind energy conversion system (WECS) based on a doubly-fed induction generator is becoming increasingly important to researchers. This system is modeled and simulated in the Matlab/Simulink software environment to apply the proposed control In order to extract the maximum power from the variable wind source, a maximum power point tracking method is developed based on the PI controller For piloting the wind energy system conversion (WECS) based on a DFIG, a combination of the integrated Backstepping controller and adaptive PSO is proposed and realized in this paper Robustness tests are established by adjusting the generator parameters, and a comparative study is conducted to verify the superiority of the suggested control over the indirect vector control GRAPHICAL ABSTRACT


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Dawei Zheng ◽  
Chao Qin ◽  
Peipei Liu

Unbalanced data classification is a major challenge in the field of data mining. Random forest, as an ensemble learning method, is usually used to solve the problem of unbalanced data classification. For the existing random forest-based classification prediction model, its hyperparameters are dependent on empirical settings, which leads to the problem of unsatisfactory model performance. In order to make random forest find the optimum modelling corresponding to the character of unbalanced data sets and improve the accuracy of prediction, we apply the improved particle swarm optimization to set reasonable hyperparameters of the model. This paper proposes a random forest-based adaptive particle swarm optimization on data classification, and an adaptive particle swarm used to optimize the hyperparameters in the random forest to ensure that the model can better predict the unbalanced data accurately. Aiming at the premature convergence that appears in the particle swarm optimization algorithm, the population is adaptively divided according to the population fitness and the adaptive update strategy is introduced to enhance the ability of particles to jump out of the local optimum. Experimental results show that our proposed algorithms outperform the traditional ones, especially regarding the evaluation criterion of F1-measure and accuracy. The results on the six keel unbalanced data set the advantages of our proposed algorithms are presented.


2021 ◽  
Vol 10 (5) ◽  
pp. 2367-2376
Author(s):  
Elmostafa Chetouani ◽  
Youssef Errami ◽  
Abdellatif Obbadi ◽  
Smail Sahnoun

This paper proposes the adaptive particle swarm optimization (APSO) technique to control the active and reactive power produced by a variable wind energy conversion system and the exchanged power between the electric grid and the system during a voltage dip (VD). Besides, to get the variable speed wind energy maximum power, a maximum power point (MPP) methodology is utilized. The system under study is a 5 MW wind turbine connected via a gearbox to a doubly-fed induction generator (DFIG). The DFIG stator is branched directly to the electrical network, while the Back-to-Back converters couple the rotor to the grid. The decoupled vector control of the rotor side converter and the grid side converter is established primarily by a conventional proportional-integral (PI) and a second level by an intelligent PI whose gains are tuned using the proposed control. The performances and results obtained by APSO tuned PI controllers are analyzed and compared with those attained by classical PI controllers through the MATLAB/Simulink. The superiority of the advised technique is examined during a two-phase short-circuit fault condition and confirmed by the reduced oscillations.


Sign in / Sign up

Export Citation Format

Share Document