traction motor
Recently Published Documents


TOTAL DOCUMENTS

594
(FIVE YEARS 198)

H-INDEX

18
(FIVE YEARS 3)

Author(s):  
Yu Zheng ◽  
Changxiu Yang ◽  
Tiefeng Peng ◽  
Liujian Zhang

Rail transit plays an important role in the social and economic life of China and even all countries in the world, especially some populous countries or regions. The traction drive system of rail vehicle provides three-phase AC with adjustable voltage and frequency for the traction motor, controls the speed and torque of the traction motor, and then controls the operation of the vehicle. The modular multilevel converter has the advantages of low harmonic, good power quality of output waveform, high reliability, no input filtering and power compensation, and is suitable in the field of frequency conversion. In this work, the open-loop scalar control and vector closed-loop control of modular multi-level high-voltage inverter were adopted. It was found that driven by modular multi-level variable frequency vector control system, asynchronous motor not only has less harmonic content of voltage and current waveform, but also its speed regulation characteristics have been improved.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 317
Author(s):  
Valeriy Kuznetsov ◽  
Ewa Kardas-Cinal ◽  
Piotr Gołębiowski ◽  
Borys Liubarskyi ◽  
Magomedemin Gasanov ◽  
...  

One of the assumptions made during the modernization process of diesel shunting locomotives is the replacement of a diesel traction motor with a DC generator with an electric asynchronous traction motor. The article aimed to develop a method of selecting energy-efficient parameters of an asynchronous electric traction motor for diesel shunting locomotives, which will ensure that its operating energy efficiency will be as high as possible. The method was verified on the example of a locomotive series ChME3 (ЧMЭ3, ČME3, ČKD S200). It has been found that using a traction asynchronous electric drive on a ChME3 locomotive, its efficiency increases in comparison with DC electric motors by 3–5% under the long-term operation modes and by 7–10% during locomotive operation with traction at the adhesion limit. Using a new traction gearbox with a higher gear ratio expands the speed range in which the asynchronous traction drive operates with a high-efficiency factor. It is effective to use a traction asynchronous electric drive to modernize ChME3 diesel locomotives in case of their use under the modes requiring the implementation of maximum traction forces at low speeds. A further increase in the efficiency of the traction asynchronous electric drive is possible based on the optimal design of the wheel-motor unit and the asynchronous traction electric drive.


2021 ◽  
Vol 12 (4) ◽  
pp. 260
Author(s):  
Shoulun Guo ◽  
Huichao Zhao ◽  
Yu Wang ◽  
Xiangrui Yin ◽  
Hongyang Qi ◽  
...  

With the increasing demand of driving range of new energy vehicle (NEV), design optimization for energy efficiency of traction motors became more important. However, traction motor design is complex since multiple objectives should be satisfied, such as the required torque-speed operating range and package and thermal constraints. This dramatically increases the computation time of the design optimization process, while the additional energy efficiency objective of the whole driving cycle. This paper proposes an equivalent driving cycle points extraction method, based on energy consumption equivalence to facilitate the design optimization of traction motors. This paper presents necessary rules of multiobjective optimization methods, and then gives an optimization process and proves the effectiveness.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yi Liu ◽  
Qi Chang ◽  
Jiaxin Luo ◽  
LinLi ◽  
Junfeng Man ◽  
...  

Under different transportation protection, the sample data of bogie traction motor bearings of urban rail vehicles are seriously unbalanced, and the fault diagnosis ability and generalization effect are poor, which makes it difficult to evaluate the protection effect of bearings effectively. In this paper, a multimeasure hybrid evaluation model based on compressed sensing is proposed to evaluate the effect of bearing transportation protection under data imbalance. Firstly, bearing vibration signals under different transport protection conditions were compressed and sampled, and the original high-Witt collection in time domain, frequency domain, and time-frequency domain was extracted. Then, a multimeasure mixed feature evaluation model of correlation, distance, and signal was constructed, and the optimal multimeasure combination strategy was optimized by using comprehensive sensitivity score evaluation index. Finally, an evaluation model of bearing protection effect based on unified feature index was constructed by using the best feature subset evaluated, and the unified indicator was quantified to characterize the protection effect of different protection states. The experimental results show that the model can effectively evaluate bearings under different transport protection.


Author(s):  
S. Goolak ◽  
Ie. Riabov ◽  
V. Tkachenko ◽  
S. Sapronova ◽  
I. Rubanik

The aim of the work is to develop a mathematical model of the traction motor of the pulsating current of an electric locomotive taking into account the magnetic losses in the motor steel to determine the starting parameters depending on the voltage of the armature winding. Methodology. Mathematical modeling of electromagnetic processes in a traction motor of pulsating current is applied taking into account the nonlinear nature of the armature inductance, the inductance of the excitation winding and the nonlinear nature of the universal magnetic characteristic. The magnetic losses in the steel of the traction motor were taken into account by establishing the dependence of these losses on the frequency of reversal, the magnetic flux in the magnetic circuit of the motor and the geometric dimensions of the motor. Results. The mathematical model of calculation of starting parameters of the traction engine of the pulsating current of the traction drive of the electric locomotive of alternating current taking into account the equation of instantaneous value of losses in engine steel is developed. The dynamic characteristics of the traction motor with pulsating current are obtained. It allows to investigate starting parameters of the traction engine on the basis of the received mathematical model and to design elements of the traction drive of the electric locomotive according to the specification, to choose optimum design parameters. Originality. For the first time a comprehensive study of the pulsating current traction motor was carried out taking into account the nonlinear nature of the armature inductance, excitation winding inductance and nonlinear nature of the universal magnetic characteristic and taking into account the magnetic losses in the motor steel. Practical significance. The model of the traction motor of pulsating current taking into account losses in steel of the engine on the basis of the carried-out calculation is developed. Experimental studies have confirmed the adequacy of the model, which allows to apply the obtained model to develop a mathematical model of an AC electric locomotive to study the electrodynamic processes in it at different modes of operation of the electric locomotive.


Author(s):  
Viacheslav Vavilov ◽  
Alexey Zherebtsov ◽  
Oxana Yushkova ◽  
Albina Nurieva ◽  
Ayaz Bakirov ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2000
Author(s):  
Jin-Hwan Lee ◽  
Woo-Jung Kim ◽  
Sang-Yong Jung

This paper proposes a robust optimization algorithm customized for the optimal design of electric machines. The proposed algorithm, termed “robust explorative particle swarm optimization” (RePSO), is a hybrid algorithm that affords high accuracy and a high search speed when determining robust optimal solutions. To ensure the robustness of the determined optimal solution, RePSO employs the rate of change of the cost function. When this rate is high, the cost function appears as a steep curve, indicating low robustness; in contrast, when the rate is low, the cost function takes the form of a gradual curve, indicating high robustness. For verification, the performance of the proposed algorithm was compared with those of the conventional methods of robust particle swarm optimization and explorative particle swarm optimization with a Gaussian basis test function. The target performance of the traction motor for the optimal design was derived using a simulation of vehicle driving performance. Based on the simulation results, the target performance of the traction motor requires a maximum torque and power of 294 Nm and 88 kW, respectively. The base model, an 8-pole 72-slot permanent magnet synchronous machine, was designed considering the target performance. Accordingly, an optimal design was realized using the proposed algorithm. The cost function for this optimal design was selected such that the torque ripple, total harmonic distortion of back-electromotive force, and cogging torque were minimized. Finally, experiments were performed on the manufactured optimal model. The robustness and effectiveness of the proposed algorithm were validated by comparing the analytical and experimental results.


Sign in / Sign up

Export Citation Format

Share Document