wildfire spread
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 36)

H-INDEX

15
(FIVE YEARS 3)

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258060
Author(s):  
Denys Yemshanov ◽  
Ning Liu ◽  
Daniel K. Thompson ◽  
Marc-André Parisien ◽  
Quinn E. Barber ◽  
...  

Although wildfires are an important ecological process in forested regions worldwide, they can cause significant economic damage and frequently create widespread health impacts. We propose a network optimization approach to plan wildfire fuel treatments that minimize the risk of fire spread in forested landscapes under an upper bound for total treated area. We used simulation modeling to estimate the probability of fire spread between pairs of forest sites and formulated a modified Critical Node Detection (CND) model that uses these estimated probabilities to find a pattern of fuel reduction treatments that minimizes the likely spread of fires across a landscape. We also present a problem formulation that includes control of the size and spatial contiguity of fuel treatments. We demonstrate the approach with a case study in Kootenay National Park, British Columbia, Canada, where we investigated prescribed burn options for reducing the risk of wildfire spread in the park area. Our results provide new insights into cost-effective planning to mitigate wildfire risk in forest landscapes. The approach should be applicable to other ecosystems with frequent wildfires.


2021 ◽  
Vol 30 (2) ◽  
pp. e008-e008
Author(s):  
Mhd.-Wathek Alhaj-Khalaf ◽  

Aim of the study: Forest fuel classification and characterization is a critical factor in wildfire management. The main purpose of this study was to develop custom fuel models for accurately mapping wildfire spread compared to standard models. Area of study: The study was conducted at a replanted forest dominated by coniferous species, in the Arabdagh region, Golestan Province, northern Iran. Material and methods: Six custom fuel models were developed to characterize the main vegetation types in the study area. Fuel samples were collected from 49 randomly selected plots. In each plot, the fuel load of 1-hr, 10-hr, 100-hr, 1000-hr, live herbs, live woody plants, surface area volume ratio, and fuel depth were estimated using the Fuel Load (FL) sampling method along three transects. Canopy fuel load was calculated for each fuel model. The performance of the custom fuel models versus standard fuel models on wildfire behavior simulations was compared using the FlamMap MTT simulator. Main results: The results showed that, despite the similarity in the burned area between observed and modeled fires, the custom fuel models produced an increase in simulation accuracy. Compared to the observed fire, simulation results did not give realistic results to the crown fire. The simulation using standard fuel models did not result in crown fire, while the simulation using custom fuel models showed a moderate rate of crown fire with a Kappa coefficient of 0.54. Research highlights: The results demonstrated the importance of developing custom fuel models to simulate wildfire maps with higher accuracy for wildfire risk management.


2021 ◽  
Vol 11 (15) ◽  
pp. 7046
Author(s):  
Jorge Francisco Ciprián-Sánchez ◽  
Gilberto Ochoa-Ruiz ◽  
Lucile Rossi ◽  
Frédéric Morandini

Wildfires stand as one of the most relevant natural disasters worldwide, particularly more so due to the effect of climate change and its impact on various societal and environmental levels. In this regard, a significant amount of research has been done in order to address this issue, deploying a wide variety of technologies and following a multi-disciplinary approach. Notably, computer vision has played a fundamental role in this regard. It can be used to extract and combine information from several imaging modalities in regard to fire detection, characterization and wildfire spread forecasting. In recent years, there has been work pertaining to Deep Learning (DL)-based fire segmentation, showing very promising results. However, it is currently unclear whether the architecture of a model, its loss function, or the image type employed (visible, infrared, or fused) has the most impact on the fire segmentation results. In the present work, we evaluate different combinations of state-of-the-art (SOTA) DL architectures, loss functions, and types of images to identify the parameters most relevant to improve the segmentation results. We benchmark them to identify the top-performing ones and compare them to traditional fire segmentation techniques. Finally, we evaluate if the addition of attention modules on the best performing architecture can further improve the segmentation results. To the best of our knowledge, this is the first work that evaluates the impact of the architecture, loss function, and image type in the performance of DL-based wildfire segmentation models.


Author(s):  
Nima Masoudvaziri ◽  
Fernando Szasdi Bardales ◽  
Oguz Kaan Keskin ◽  
Amir Sarreshtehdari ◽  
Kang Sun ◽  
...  

2021 ◽  
Author(s):  
Martín Senande-Rivera ◽  
Gonzalo Miguez-Macho

<p>Extreme wildfire events associated with strong pyroconvection have gained the attention of the scientific community and the society in recent years. Strong convection in the fire plume can influence fire behaviour, as downdrafts can cause abrupt variations in surface wind direction and speed that can result in bursts of unexpected fire propagation. Climate change is expected to increase the length of the fire season and the extreme wildfire potential, so the risk of pyroconvection occurence might be also altered. Here, we analyse atmospheric stability and near-surface fire weather conditions in the Iberian Peninsula at the end of the 21st century to assess the projected changes in pyroconvective risk during favourable weather conditions for wildfire spread.  </p>


Fire ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 6
Author(s):  
Gavin M. Schag ◽  
Douglas A. Stow ◽  
Philip J. Riggan ◽  
Robert G. Tissell ◽  
Janice L. Coen

The objectives of this study are to evaluate landscape-scale fuel and terrain controls on fire rate of spread (ROS) estimates derived from repetitive airborne thermal infrared (ATIR) imagery sequences collected during the 2017 Thomas and Detwiler extreme wildfire events in California. Environmental covariate data were derived from prefire National Agriculture Imagery Program (NAIP) orthoimagery and USGS digital elevation models (DEMs). Active fronts and spread vectors of the expanding fires were delineated from ATIR imagery. Then, statistical relationships between fire spread rates and landscape covariates were analyzed using bivariate and multivariate regression. Directional slope is found to be the most statistically significant covariate with ROS for the five fire imagery sequences that were analyzed and its relationship with ROS is best characterized as an exponential growth function (adj. R2 max = 0.548, min = 0.075). Imaged-derived fuel covariates alone are statistically weak predictors of ROS (adj. R2 max = 0.363, min = 0.002) but, when included in multivariate models, increased ROS predictability and variance explanation (+14%) compared to models with directional slope alone.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245132
Author(s):  
Michael Anthony Storey ◽  
Owen F. Price ◽  
Miguel Almeida ◽  
Carlos Ribeiro ◽  
Ross A. Bradstock ◽  
...  

Spotting is thought to increase wildfire rate of spread (ROS) and in some cases become the main mechanism for spread. The role of spotting in wildfire spread is controlled by many factors including fire intensity, number of and distance between spot fires, weather, fuel characteristics and topography. Through a set of 30 laboratory fire experiments on a 3 m x 4 m fuel bed, subject to air flow, we explored the influence of manually ignited spot fires (0, 1 or 2), the presence or absence of a model hill and their interaction on combined fire ROS (i.e. ROS incorporating main fire and merged spot fires). During experiments conducted on a flat fuel bed, spot fires (whether 1 or 2) had only a small influence on combined ROS. Slowest combined ROS was recorded when a hill was present and no spot fires were ignited, because the fires crept very slowly downslope and downwind of the hill. This was up to, depending on measurement interval, 5 times slower than ROS in the flat fuel bed experiments. However, ignition of 1 or 2 spot fires (with hill present) greatly increased combined ROS to similar levels as those recorded in the flat fuel bed experiments (depending on spread interval). The effect was strongest on the head fire, where spot fires merged directly with the main fire, but significant increases in off-centre ROS were also detected. Our findings suggest that under certain topographic conditions, spot fires can allow a fire to overcome the low spread potential of downslopes. Current models may underestimate wildfire ROS and fire arrival time in hilly terrain if the influence of spot fires on ROS is not incorporated into predictions.


Sign in / Sign up

Export Citation Format

Share Document