power law index
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 101)

H-INDEX

20
(FIVE YEARS 6)

2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110704
Author(s):  
Jianhua Sun ◽  
Hai Gu ◽  
Jie Zhang ◽  
Yuanyuan Xu ◽  
Guoqing Wu ◽  
...  

SLA (stereolithography), as a rapid and accurate additive manufacturing method, can be used to mold the microchannel. The stair effect is inevitable when the part is printed layer by layer, which has an important influence on the printing performance. In the current work, the power-law flow in the microchannel with nano-scale stairs manufactured by SLA is simulated and investigated. To improve the stability caused by the non-Newtonian behavior, a modified lattice Boltzmann method (LBM) is proposed and validated. Then, a series of simulations are conducted and analyzed, the results show that both the stair effect and power-law index are important factors. The stairs on the surface force the streamlines to be curved and increase the outlet velocity. In addition, different power-law indexes result in completely different flows. The small power-law index leads to a much larger velocity than other cases, while the large power-law index makes the outlet velocity unstable at the middle position.


Author(s):  
B J Gireesha ◽  
Nagaraja B ◽  
N Srikantha ◽  
N. G. Rudraswamy ◽  
Felicita Almeida

Abstract This examination emphasizes the analysis of thermal transmission of Carreau fluid flow on a permeable sensor surface equipped with radiation, Joule heating, internal heat source, and magnetic field. With the above effects and assumptions, the equations that administer the flow are formulated. Configured system of equations is productively reduced to system of ordinary differential equations. The reduced system is then dealt with the Runge-Kutta-Fehlberg 4th -5th order tool equipped by shooting technique. Derived numerical solutions are utilized to plot graphs and tables. The study concluded with some important findings such as power law index, thermal radiation parameter and heat source parameter enhance the thermal panel whereas Weissenberg number deescalates the same. The power law index and permeable velocity decrease the velocity panel significantly. Diagrammatic representation of streamlines of the flow has been given to strengthen the study. A detailed description has been produced about the results obtained in the study


2021 ◽  
Vol 923 (2) ◽  
pp. 156
Author(s):  
Y. Sophia Dai ◽  
Matthew M. Malkan ◽  
Harry I. Teplitz ◽  
Claudia Scarlata ◽  
Anahita Alavi ◽  
...  

Abstract We identify a sample of spectroscopically measured emission line galaxy (ELG) Pairs up to z = 1.6 from the Wide Field Camera 3 (WFC3) Infrared Spectroscopic Parallels (WISP) survey. WISP obtained slitless, near-infrared grism spectroscopy along with direct imaging in the J and H bands by observing in the pure-parallel mode with the WFC3 on board the Hubble Space Telescope. From our search of 419 WISP fields covering an area of ∼0.5 deg2, we find 413 ELG pair systems, mostly H α emitters. We then derive reliable star formation rates (SFRs) based on the attenuation-corrected H α fluxes. Compared to isolated galaxies, we find an average SFR enhancement of 40%–65%, which is stronger for major Pairs and Pairs with smaller velocity separations (Δ v < 300 km s−1). Based on the stacked spectra from various subsamples, we study the trends of emission line ratios in pairs, and find a general consistency with enhanced lower ionization lines. We study the pair fraction among ELGs, and find a marginally significant increase with redshift f ∝ (1 + z) α , where the power-law index α = 0.58 ± 0.17 from z ∼ 0.2 to ∼1.6. The fraction of active galactic nuclei is found to be the same in the ELG Pairs as compared to the isolated ELGs.


2021 ◽  
Vol 923 (1) ◽  
pp. 54
Author(s):  
Joseph M. Michail ◽  
Mark Wardle ◽  
Farhad Yusef-Zadeh ◽  
Devaky Kunneriath

Abstract We present and analyze ALMA submillimeter observations from a multiwavelength campaign of Sgr A* during 2019 July 18. In addition to the submillimeter, we utilize concurrent mid-infrared (mid-IR; Spitzer) and X-ray (Chandra) observations. The submillimeter emission lags less than δ t ≈ 30 minutes behind the mid-IR data. However, the entire submillimeter flare was not observed, raising the possibility that the time delay is a consequence of incomplete sampling of the light curve. The decay of the submillimeter emission is not consistent with synchrotron cooling. Therefore, we analyze these data adopting an adiabatically expanding synchrotron source that is initially optically thick or thin in the submillimeter, yielding time-delayed or synchronous flaring with the IR, respectively. The time-delayed model is consistent with a plasma blob of radius 0.8 R S (Schwarzschild radius), electron power-law index p = 3.5 (N(E) ∝ E −p ), equipartition magnetic field of B eq ≈ 90 Gauss, and expansion velocity v exp ≈ 0.004 c . The simultaneous emission is fit by a plasma blob of radius 2 R S, p = 2.5, B eq ≈ 27 Gauss, and v exp ≈ 0.014 c . Since the submillimeter time delay is not completely unambiguous, we cannot definitively conclude which model better represents the data. This observation presents the best evidence for a unified flaring mechanism between submillimeter and X-ray wavelengths and places significant constraints on the source size and magnetic field strength. We show that concurrent observations at lower frequencies would be able to determine if the flaring emission is initially optically thick or thin in the submillimeter.


2021 ◽  
Vol 257 (2) ◽  
pp. 59
Author(s):  
Mandana Amiri ◽  
Bridget C. Andersen ◽  
Kevin Bandura ◽  
Sabrina Berger ◽  
Mohit Bhardwaj ◽  
...  

Abstract We present a catalog of 536 fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project between 400 and 800 MHz from 2018 July 25 to 2019 July 1, including 62 bursts from 18 previously reported repeating sources. The catalog represents the first large sample, including bursts from repeaters and nonrepeaters, observed in a single survey with uniform selection effects. This facilitates comparative and absolute studies of the FRB population. We show that repeaters and apparent nonrepeaters have sky locations and dispersion measures (DMs) that are consistent with being drawn from the same distribution. However, bursts from repeating sources differ from apparent nonrepeaters in intrinsic temporal width and spectral bandwidth. Through injection of simulated events into our detection pipeline, we perform an absolute calibration of selection effects to account for systematic biases. We find evidence for a population of FRBs—composing a large fraction of the overall population—with a scattering time at 600 MHz in excess of 10 ms, of which only a small fraction are observed by CHIME/FRB. We infer a power-law index for the cumulative fluence distribution of α = − 1.40 ± 0.11 ( stat. ) − 0.09 + 0.06 ( sys. ) , consistent with the −3/2 expectation for a nonevolving population in Euclidean space. We find that α is steeper for high-DM events and shallower for low-DM events, which is what would be expected when DM is correlated with distance. We infer a sky rate of [ 820 ± 60 ( stat. ) − 200 + 220 ( sys. ) ] / sky / day above a fluence of 5 Jy ms at 600 MHz, with a scattering time at 600 MHz under 10 ms and DM above 100 pc cm−3.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hasan Shahzad ◽  
Xinhua Wang ◽  
Ioannis Sarris ◽  
Kaleem Iqbal ◽  
Muhammad Bilal Hafeez ◽  
...  

AbstractFluid structure interaction (FSI) gained attention of researchers and scientist due to its applications in science fields like biomedical engineering, mechanical engineering etc. One of the major application in FSI is to study elastic wall behavior of stenotic arteries. In this paper we discussed an incompressible Non-Newtonian blood flow analysis in an elastic bifurcated artery. A magnetic field is applied along $$x$$ x direction. For coupling of the problem an Arbitrary Lagrangian–Eulerian formulation is used by two-way fluid structure interaction. To discretize the problem, we employed $$P_{2} P_{1}$$ P 2 P 1 finite element technique to approximate the velocity, displacement and pressure and then linearized system of equations is solved using Newton iteration method. Analysis is carried out for power law index, Reynolds number and Hartmann number. Hemodynamic effects on elastic walls, stenotic artery and bifurcated region are evaluated by using velocity profile, pressure and loads on the walls. Study shows there is significant increase in wall shear stresses with an increase in Power law index and Hartmann number. While as expected increase in Reynolds number decreases the wall shear stresses. Also load on the upper wall is calculated against Hartmann number for different values of power law index. Results show load increases as the Hartmann number and power law index increases. From hemodynamic point of view, the load on the walls is minimum for shear thinning case but when power law index increased i.e. for shear thickening case load on the walls increased.


2021 ◽  
Vol 922 (2) ◽  
pp. 168
Author(s):  
C. J. Nixon ◽  
Eric R. Coughlin ◽  
Patrick R. Miles

Abstract We present long-duration numerical simulations of the tidal disruption of stars modeled with accurate stellar structures and spanning a range of pericenter distances, corresponding to cases where the stars are partially and completely disrupted. We substantiate the prediction that the late-time power-law index of the fallback rate n ∞ ≃ −5/3 for full disruptions, while for partial disruptions—in which the central part of the star survives the tidal encounter intact—we show that n ∞ ≃ −9/4. For the subset of simulations where the pericenter distance is close to that which delineates full from partial disruption, we find that a stellar core can reform after the star has been completely destroyed; for these events the energy of the zombie core is slightly positive, which results in late-time evolution from n ≃ −9/4 to n ≃ −5/3. We find that self-gravity can generate an n(t) that deviates from n ∞ by a small but significant amount for several years post-disruption. In one specific case with the stellar pericenter near the critical value, we find that self-gravity also drives the recollapse of the central regions of the debris stream into a collection of several cores while the rest of the stream remains relatively smooth. We also show that it is possible for the surviving stellar core in a partial disruption to acquire a circumstellar disk that is shed from the rapidly rotating core. Finally, we provide a novel analytical fitting function for the fallback rates that may also be useful in a range of contexts beyond tidal disruption events.


2021 ◽  
Vol 922 (2) ◽  
pp. L23
Author(s):  
Alexandre Araújo ◽  
Adriana Valio

Abstract Stellar magnetic activity, just like that of the Sun, manifests itself in the form of flares and spots on the surface of the star. In the solar case, the largest flares originate from large active regions. In this work, we present a study of the activity of the star Kepler-411, including spot modeling from planetary transits. Our goal was to search for a connection between the area of starspots with the energy of superflares produced by this star. Kepler-411 is a K2V-type star with an average rotation period of 10.52 days, radius of 0.79 R ⊙, and a mass of 0.83 M ⊙, which was observed by the Kepler satellite for about 600 days. Transit mapping allowed for the characterization of 198 starspots with estimates of their radius and temperature. Kepler-411 starspots had an average radius of (17 ± 7) × 103 km and a mean temperature of 3800 ± 700 K. Visual inspection of the light curves of Kepler-411 yields the identification of 65 superflares. The detected superflares lasted from 8 to 260 minutes and their energy varied from 1033–1035 ergs. The power-law index of the flare frequency distribution as a function of energy is (−2.04 ± 0.13) for the flare on Kepler-411. A positive correlation between the area of starspots and the energy of superflares was found when considering the averages taken every 16–35 days, with the highest correlation occurring for averages every 21 days. This timing is probably related to the lifetime of the Kepler-411 spots.


2021 ◽  
Author(s):  
Mashnoon Islam ◽  
Salma Abdul Hai ◽  
Preetom Nag ◽  
Md Mamun Molla

Abstract This numerical study demonstrates heat transfer and irreversibility or entropy generation of non-Newtonian power-law Al2O3-H2O (aluminum oxide-water) nanofluids in a square enclosure using multiple-relaxation-time lattice Boltzmann method accelerated by graphics processing unit computing. In this investigation, the effective thermal conductivity and viscosity are variables, and they depend on the fluid temperature and rate of strain, respectively. The enclosure’s left and right walls are uniformly heated with different temperatures, and the upper and lower walls are thermally adiabatic. There is no valid study and results on non-Newtonian fluid using multiple-relaxation-time lattice Boltzmann method for this configuration and hence the novelty of the present results have been ensured. This paper has formulated and appropriately validated the Newtonian and non-Newtonian natural convection problem with the available numerical results. This study includes a set of comprehensive simulations, showing the effects of these fluids’ natural convection by varying three key parameters: the Rayleigh number, the volume fraction of nanoparticles, and the power-law index on the streamlines, isotherms, local and average Nusselt number as well as the local and total entropy generation. The results show that increasing the volume fraction of the nanoparticles from 0% to 2%, the average rate of heat transfer and the total entropy generation increase 6.5% and 7.4%, respectively, while the Rayleigh number, Ra = 105 and the power-law index n = 0.6.


2021 ◽  
Vol 9 ◽  
Author(s):  
Gongchang Wang ◽  
Yingxian Liu ◽  
Zongbin Liu

Considering the rheological properties of fluid, reservoir heterogeneity, and eccentricity factor, the productivity formula of horizontal well for the power-law fluid heavy oil reservoir is derived by transforming the three-dimensional seepage problem into a two-dimensional seepage problem. The heavy oil production calculated by this formula is in good agreement with the actual production in the offshore oil field. Then, the influencing factors of production are analyzed, and the results show that the power-law index has the greatest influence on production. When the power-law index is less than 0.8, the production increases slowly with the power-law index and when it is greater than 0.8, the production increases faster. The power-law index has a greater impact on production for higher production pressure differential and longer horizontal well. Anisotropy has significant influence on the production. When the value of Kh/Kv is less than 10, the production decreases rapidly with the Kh/Kv; after the value of Kh/Kv is greater than 10, the production decreases slower. Eccentricity has trivial impact on the production.


Sign in / Sign up

Export Citation Format

Share Document