wind farm design
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 20)

H-INDEX

10
(FIVE YEARS 3)

2022 ◽  
Vol 158 ◽  
pp. 112087
Author(s):  
E.A. Virtanen ◽  
J. Lappalainen ◽  
M. Nurmi ◽  
M. Viitasalo ◽  
M. Tikanmäki ◽  
...  

2022 ◽  
pp. 0309524X2110728
Author(s):  
Jonathan Rogers ◽  
Mark Costello

The public road setback distance is often an important factor that drives wind farm design. This paper outlines a methodology for assessing the risk imposed by blade throw at various road setbacks using a physics-based simulation approach. Given a road setback distance, Monte Carlo simulation is performed wherein blade throw parameters and vehicle locations are randomized. Potential collisions are determined using an “impact circle” approach which assumes that impact occurs if the vehicle is inside the impact radius of the blade fragment when it lands. This approach is exercised on several example turbines and risk levels are calculated for various road setbacks. The method is also applied to a notional wind farm with turbines located at a typical road setback distance. Results show that the blade throw risk imposed to vehicles on public roads for the example wind farm is extremely small and commensurate with risks imposed by everyday activities.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0254159
Author(s):  
Alan H. Fielding ◽  
David Anderson ◽  
Stuart Benn ◽  
Roy Dennis ◽  
Matthew Geary ◽  
...  

Wind farms can have two broad potential adverse effects on birds via antagonistic processes: displacement from the vicinity of turbines (avoidance), or death through collision with rotating turbine blades. These effects may not be mutually exclusive. Using detailed data from 99 turbines at two wind farms in central Scotland and thousands of GPS-telemetry data from dispersing golden eagles, we tested three hypotheses. Before-and-after-operation analyses supported the hypothesis of avoidance: displacement was reduced at turbine locations in more preferred habitat and with more preferred habitat nearby. After-operation analyses (i.e. from the period when turbines were operational) showed that at higher wind speeds and in highly preferred habitat eagles were less wary of turbines with motionless blades: rejecting our second hypothesis. Our third hypothesis was supported, since at higher wind speeds eagles flew closer to operational turbines; especially–once more–turbines in more preferred habitat. After operation, eagles effectively abandoned inner turbine locations, and flight line records close to rotor blades were rare. While our study indicated that whole-wind farm functional habitat loss through avoidance was the substantial adverse impact, we make recommendations on future wind farm design to minimise collision risk further. These largely entail developers avoiding outer turbine locations which are in and surrounded by swathes of preferred habitat. Our study illustrates the insights which detailed case studies of large raptors at wind farms can bring and emphasises that the balance between avoidance and collision can have several influences.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 886
Author(s):  
Javier Serrano González ◽  
Manuel Burgos Payán ◽  
Jesús Manuel Riquelme Santos ◽  
Ángel Gaspar González Rodríguez

This paper presents a novel tool for optimizing floating offshore wind farms based on weathervaning turbines. This solution is grounded on the ability of the assembly (wind turbine plus floater) to self-orientate into the wind direction, as this concept is allowed to freely pivot on a single point. This is a passive yaw potential solution for floating wind farms currently in the demonstration phase. A genetic algorithm is proposed for optimizing the levelised cost of energy by determining the geographical coordinates of the pivot points (i.e., the position over which the assembly can rotate to self-orient to the incoming wind direction). A tailored evaluation module is proposed to take into account the weathervaning motion around the pivot point depending on the incoming wind direction. The results obtained show the suitability of the proposed method to solve the addressed problem under realistic conditions. Additionally, the influence of the feasible region defined by the plot and the maximum area occupied on floating offshore wind farm design are also analysed in the proposed test cases. These deployable area constraints are of great importance for the viability of this technology, as it requires more space than classical solutions anchored to a fixed point.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6604
Author(s):  
Yuan Song ◽  
Insu Paek

In this study, dynamic simulations of a wind turbine were performed to predict its dynamic performance, and the results were experimentally validated. The dynamic simulation received time-domain wind speed and direction data and predicted the power output by applying control algorithms. The target wind turbine for the simulation was a 2 MW wind turbine installed in an onshore wind farm. The wind speed and direction data for the simulation were obtained from WindSim, which is a commercial computational fluid dynamics (CFD) code for wind farm design, and measured wind speed and direction data with a mast were used for WindSim. For the simulation, the wind turbine controller was tuned to match the power curve of the target wind turbine. The dynamic simulation was performed for a period of one year, and the results were compared with the results from WindSim and the measurement. It was found from the comparison that the annual energy production (AEP) of a wind turbine can be accurately predicted using a dynamic wind turbine model with a controller that takes into account both power regulations and yaw actions with wind speed and direction data obtained from WindSim.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5753 ◽  
Author(s):  
Zhenye Sun ◽  
Wei Jun Zhu ◽  
Wen Zhong Shen ◽  
Wei Zhong ◽  
Jiufa Cao ◽  
...  

The size of wind turbine rotors is still rapidly increasing, though many technical challenges emerge. Novel rotor designs emerge to satisfy this up-scale trend, such as downwind load-aligned concepts, which orients the loads along the blade spanwise to greatly decrease the bending moments at the root. As the studies on the aerodynamics of these rotor concepts using 3D body-fitted mesh are very limited, this paper establishes different cone configurations based on the DTU 10 MW reference rotor and conducts a series of simulations. It is found that the cone angle and the distance from the blade section to the tip vortex are two deterministic factors on conning. Upwind rotors have larger power output, less thrust, smaller wake deficit, and smaller influencing area than downwind rotors of the same size, which provides superior aerodynamic priority and benefits wind farm design. The largest upwind cone angle of 14.03°, among the cases studied, leads to the highest torque to thrust ratio which is 3.63% higher than the baseline rotor. The downwind load-aligned rotor, designed to reduce the blade root bending moments at large wind speed, performs worse at the present simulation conditions than an upwind rotor of the same size.


2020 ◽  
Vol 5 (4) ◽  
pp. 1425-1434
Author(s):  
Philip Bradstock ◽  
Wolfgang Schlez

Abstract. This paper details the background to the WakeBlaster model: a purpose-built, parabolic three-dimensional RANS solver, developed by ProPlanEn. WakeBlaster is a field model, rather than a single turbine model; it therefore eliminates the need for an empirical wake superposition model. It belongs to a class of very fast (a few core seconds, per flow case) mid-fidelity models, which are designed for industrial application in wind farm design, operation, and control. The domain is a three-dimensional structured grid, a node spacing of a tenth of a rotor diameter, by default. WakeBlaster uses eddy viscosity turbulence closure, which is parameterized by the local shear, time-lagged turbulence development, and stability corrections for ambient shear and turbulence decay. The model prescribes a profile at the end of the near wake, and the spatial variation of ambient flow, by using output from an external flow model.


Sign in / Sign up

Export Citation Format

Share Document