olfactory sensory neurons
Recently Published Documents


TOTAL DOCUMENTS

353
(FIVE YEARS 84)

H-INDEX

49
(FIVE YEARS 6)

2022 ◽  
Vol 15 ◽  
Author(s):  
Sinisa Prelic ◽  
Venkatesh Pal Mahadevan ◽  
Vignesh Venkateswaran ◽  
Sofia Lavista-Llanos ◽  
Bill S. Hansson ◽  
...  

Insects detect volatile chemicals using antennae, which house a vast variety of olfactory sensory neurons (OSNs) that innervate hair-like structures called sensilla where odor detection takes place. In addition to OSNs, the antenna also hosts various support cell types. These include the triad of trichogen, tormogen, and thecogen support cells that lie adjacent to their respective OSNs. The arrangement of OSN supporting cells occurs stereotypically for all sensilla and is widely conserved in evolution. While insect chemosensory neurons have received considerable attention, little is known about the functional significance of the cells that support them. For instance, it remains unknown whether support cells play an active role in odor detection, or only passively contribute to homeostasis, e.g., by maintaining sensillum lymph composition. To investigate the functional interaction between OSNs and support cells, we used optical and electrophysiological approaches in Drosophila. First, we characterized the distribution of various supporting cells using genetic markers. By means of an ex vivo antennal preparation and genetically-encoded Ca2+ and K+ indicators, we then studied the activation of these auxiliary cells during odor presentation in adult flies. We observed acute responses and distinct differences in Ca2+ and K+ fluxes between support cell types. Finally, we observed alterations in OSN responses upon thecogen cell ablation in mature adults. Upon inducible ablation of thecogen cells, we notice a gain in mechanical responsiveness to mechanical stimulations during single-sensillum recording, but a lack of change to the neuronal resting activity. Taken together, these results demonstrate that support cells play a more active and responsive role during odor processing than previously thought. Our observations thus reveal that support cells functionally interact with OSNs and may be important for the extraordinary ability of insect olfactory systems to dynamically and sensitively discriminate between odors in the turbulent sensory landscape of insect flight.


2021 ◽  
Author(s):  
Annika Cichy ◽  
Adam Dewan ◽  
Jingji Zhang ◽  
Sarah Kaye ◽  
Tiffany Teng ◽  
...  

While the olfactory system is required for proper social behaviors, the molecular basis for how social cues are detected via the main olfactory pathway of mammals is not well-characterized. Trimethylamine is a volatile, sex-specific odor found in adult male mouse urine that selectively activates main olfactory sensory neurons that express trace amine-associated receptor 5 (TAAR5). Here we show that trimethylamine, acting via TAAR5, elicits state-dependent attraction or aversion in male mice and drives inter-male aggression. Genetic knockout of TAAR5 significantly reduces aggression-related behaviors, while adding trimethylamine augments aggressive behavior towards juvenile males. We further show that transgenic expression of TAAR5 specifically in olfactory sensory neurons rescues aggressive behaviors in knockout mice, despite extensive remapping of TAAR5 projections to the olfactory bulb. Our results identify a specific main olfactory input that detects a prominent male-specific odor to induce inter-male aggression in a mammalian species and reveal that apparently innate behavioral responses are independent of patterned glomerular input to the olfactory bulb.


2021 ◽  
Author(s):  
Lorena Halty-deLeon ◽  
Venkatesh Pal Mahadevan ◽  
Bill S. Hansson ◽  
Dieter Wicher

AbstractIn insect olfaction, sensitization refers to the amplification of a weak olfactory signal when the stimulus is repeated within a specific time window. In the vinegar fly, Drosophila melanogaster, his occurs already at the periphery, at the level of olfactory sensory neurons (OSNs) located in the antenna. In our study, we investigate whether sensitization is a widespread property in a set of seven types of OSNs, as well as the mechanisms involved. First, we characterize and compare differences in spontaneous activity, response velocity and response dynamics among the selected OSN types. These express different receptors with distinct tuning properties and behavioral relevance. Second, we show that sensitization is not a general property. Among our selected OSNs types, it occurs in those responding to more general food odors, while OSNs involved in very specific detection of highly specific ecological cues like pheromones and warning signals show no sensitization. Moreover, we show that mitochondria play an active role in sensitization by contributing to the increase in intracellular Ca2+ upon weak receptor activation. Thus, by using a combination of single sensillum recordings (SSR), calcium imaging and pharmacology, we widen the understanding of how the olfactory signal is processed at the periphery.Abstract Figure


2021 ◽  
pp. 1-16
Author(s):  
Maurizio Lazzari ◽  
Simone Bettini ◽  
Liliana Milani ◽  
Maria G. Maurizii ◽  
Valeria Franceschini

Abstract Olfactory sensory neurons (OSNs) of fish belong to three main types: ciliated olfactory sensory neurons (cOSNs), microvillous olfactory sensory neurons (mOSNs), and crypt cells. Mercury is a toxic metal harmful for olfaction. We exposed the olfactory epithelium of zebrafish to three sublethal Hg2+ concentrations. Molecular markers specific for the different types of OSNs were immunohistochemically detected. Image analysis of treated sections enabled counting of marked cells and measurement of staining optical density indicative of the response of OSNs to Hg2+ exposure. The three types of OSNs reacted to mercury in a different way. Image analysis revealed that mOSNs are more susceptible to Hg2+ exposure than cOSNs and crypt cell density decreases. Moreover, while the ratio between sensory/nonsensory epithelium areas is unchanged, epithelium thickness drops, and dividing cells increase in the basal layer of the olfactory epithelium. Cell death but also reduction of apical processes and marker expression could account for changes in OSN immunostaining. Also, the differential results between dorsal and ventral halves of the olfactory rosette could derive from different water flows inside the olfactory chamber or different subpopulations in OSNs.


2021 ◽  
Author(s):  
Brandon M. Chelette ◽  
Ashley M. Loeven ◽  
Destinee N. Gatlin ◽  
Daniel R. Landi Conde ◽  
Carley M. Huffstetler ◽  
...  

2021 ◽  
Author(s):  
Wilson Valbon ◽  
Felipe Andreazza ◽  
Eugenio E. Oliveira ◽  
Feng Liu ◽  
Bo Feng ◽  
...  

2021 ◽  
Vol 7 (41) ◽  
Author(s):  
Mari Aoki ◽  
Igor Gamayun ◽  
Amanda Wyatt ◽  
Ramona Grünewald ◽  
Martin Simon-Thomas ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Federica Genovese ◽  
Johannes Reisert ◽  
Vladimir J. Kefalov

The past decades have seen tremendous progress in our understanding of the function of photoreceptors and olfactory sensory neurons, uncovering the mechanisms that determine their properties and, ultimately, our ability to see and smell. This progress has been driven to a large degree by the powerful combination of physiological experimental tools and genetic manipulations, which has enabled us to identify the main molecular players in the transduction cascades of these sensory neurons, how their properties affect the detection and discrimination of stimuli, and how diseases affect our senses of vision and smell. This review summarizes some of the common and unique features of photoreceptors and olfactory sensory neurons that make these cells so exciting to study.


2021 ◽  
Author(s):  
Sinisa Prelic ◽  
Venkatesh Pal Mahadevan ◽  
Vignesh Venkateswaran ◽  
Sofia Lavista-Llanos ◽  
Bill S. Hansson ◽  
...  

AbstractInsects detect volatile chemicals using antennae, which house a vast variety of olfactory sensory neurons (OSNs) that innervate hair-like structures called sensilla where odor detection takes place. In addition to OSNs, the antenna also hosts various support cell types. These include the triad of trichogen, tormogen and thecogen support cells that lie adjacent to their respective OSNs. The arrangement of OSN supporting cells occurs stereotypically for all sensilla and is widely conserved in evolution. While insect chemosensory neurons have received considerable attention, little is known about the functional significance of the cells that support them. For instance, it remains unknown whether support cells play an active role in odor detection, or only passively contribute to homeostasis, e.g. by maintaining sensillum lymph composition. To investigate the functional interaction between OSNs and support cells, we used optical and electrophysiological approaches in Drosophila. First, we characterized the distribution of various supporting cells using genetic markers. By means of an ex vivo antennal preparation and genetically-encoded Ca2+ and K+ indicators, we then studied the activation of these auxiliary cells during odor presentation in adult flies. We observed acute responses and distinct differences in Ca2+ and K+ fluxes between support cell types. Finally, we observed alterations in OSN responses upon thecogen cell ablation in mature adults. Upon inducible ablation of thecogen cells, we notice a gain in mechanical responsiveness to mechanical stimulations during single-sensillum recording, but a lack of change to neuronal resting activity. Taken together, these results demonstrate that support cells play a more active and responsive role during odor processing than previously thought. Our observations thus reveal that support cells functionally interact with OSNs and may be important for the extraordinary ability of insect olfactory systems to dynamically and sensitively discriminate between odors in the turbulent sensory landscape of insect flight.


2021 ◽  
Author(s):  
Takehisa Suzuki ◽  
Ryota Nakahigashi ◽  
Masaatsu Adachi ◽  
Toshio Nishikawa ◽  
Hideki Abe

Tetrodotoxin (TTX) is a well-known neurotoxin that functions as a defense substance for toxic puffers. Several behavioral studies reported that TTX attracts toxic puffers belonging to the genus Takifugu. Although our electrophysiological and behavioral studies showed that a TTX analog, 5,6,11-trideoxyTTX, acts as an olfactory chemoattractant for grass puffers (Takifugu alboplumbeus), it is unclear whether toxic puffers are commonly attracted to 5,6,11-trideoxyTTX, and which types of olfactory sensory neurons (OSNs) detect 5,6,11-trideoxyTTX. Here we investigated whether green spotted puffer (Dichotomyctere nigroviridis), a phylogenetically different species from the grass puffer, is attracted to 5,6,11-trideoxyTTX. Administration of 5,6,11-trideoxyTTX attracted green spotted puffers, but TTX or Vehicle did not. Furthermore, immunohistochemistry of the olfactory epithelium exposed to 5,6,11-trideoxyTTX with an antibody against phosphorylated ribosomal protein S6 (pS6), a neuronal activity marker, labeled oval cells with apical invagination. Such oval cells were also labeled by the antibody against S100, a specific marker of crypt OSNs. Thus, our results suggest that 5,6,11-trideoxyTTX acts as an olfactory chemoattractant that is detected by crypt-type OSNs in the olfactory epithelium of green spotted puffers. Toxic puffers may use 5,6,11-trideoxyTTX as an olfactory chemoattractant involved in reproduction and parental care or as an olfactory cue of TTX- bearing organisms for effective toxification.


Sign in / Sign up

Export Citation Format

Share Document