dental applications
Recently Published Documents


TOTAL DOCUMENTS

794
(FIVE YEARS 259)

H-INDEX

40
(FIVE YEARS 9)

Author(s):  
Vinayaka Ambujakshi Manjunatha ◽  
Ankitha Anil Jadhav ◽  
Chaitanya Sree Chalichamala ◽  
Annavarapu Sahithi ◽  
Harsha Madakaripura Dasegowda

Platelet analogues (PA; platelet rich plasma and platelet rich fibrin) are autologous bioactive compounds that have a wide range of medical and dental applications, including periodontal, maxillofacial, Plastic surgery and sports medicine. The aim of these technologies is to collect all the constituents of a patient's blood sample so that they can be used to promote tissue regeneration and improve healing. Since 1954, PA has come a long way. Periodontology and implant dentistry have both benefited from the use of PAs. However, the non-standard preparation technique, processing time, transfer of concentrates, centrifugation temperature, vibration, etc. are all variables that contribute to the various results described in the literature. This study will retrace the evolution of PAs, their preparation procedures, their clinical and technological characteristics and their uses.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 427
Author(s):  
Ashwini Naganthran ◽  
Gayathiri Verasoundarapandian ◽  
Farah Eryssa Khalid ◽  
Mas Jaffri Masarudin ◽  
Azham Zulkharnain ◽  
...  

Silver nanoparticles (AgNPs) have been employed in various fields of biotechnology due to their proven properties as an antibacterial, antiviral and antifungal agent. AgNPs are generally synthesized through chemical, physical and biological approaches involving a myriad of methods. As each approach confers unique advantages and challenges, a trends analysis of literature for the AgNPs synthesis using different types of synthesis were also reviewed through a bibliometric approach. A sum of 10,278 publications were analyzed on the annual numbers of publication relating to AgNPs and biological, chemical or physical synthesis from 2010 to 2020 using Microsoft Excel applied to the Scopus publication database. Furthermore, another bibliometric clustering and mapping software were used to study the occurrences of author keywords on the biomedical applications of biosynthesized AgNPs and a total collection of 224 documents were found, sourced from articles, reviews, book chapters, conference papers and reviews. AgNPs provides an excellent, dependable, and effective solution for seven major concerns: as antibacterial, antiviral, anticancer, bone healing, bone cement, dental applications and wound healing. In recent years, AgNPs have been employed in biomedical sector due to their antibacterial, antiviral and anticancer properties. This review discussed on the types of synthesis, how AgNPs are characterized and their applications in biomedical field.


2022 ◽  
Author(s):  
Zuzanna Buchwald ◽  
Mariusz Sandomierski ◽  
Wojciech Smułek ◽  
Maria Ratajczak ◽  
Adam Patalas ◽  
...  

Abstract Insufficient mechanical properties of hydroxyapatite -based composites prompted the search for new and effective solutions for dental applications. To improve the mechanical properties without losing the remineralization potential, the use of hybrid fillers was proposed. The first of them was based on the formation of hydroxyapatite (HA) layer on the surface of SYLOID®244 silica. The second of the investigated fillers was created by simultaneous synthesis of nanoparticles from precursors of HA and silica. The obtained fillers were extensively characterized by spectral methods including X-ray Diffractometry (XRD), Fourier-Transform Infrared Spectroscopy (FT-IR), and X-ray fluorescence (XRF), as well as by Scanning Electron Microscopy (SEM)/Energy Dispersive Spectroscopy (EDS). Tests using probiotic microorganisms were an important part of the analysis, indicating that there was no potential interaction of the materials with microflora. The tests of degree of conversion, depth of cure, opacity, sorption, solubility, flexural and compressive strength, and the remineralizing potential also showed that the composites with nano-sized silica/HA showed better mechanical properties than the composites with HA alone or commercial silica and at the same time the remineralization remained at the desired level. Thus, the proposed composite has a high application potential in the creation of implants and dental materials.


Author(s):  
Lamis R. Darwish ◽  
Ahmed Al-Qady ◽  
Mohamed T. El-Wakad ◽  
Mahmoud M. Farag ◽  
Rania R. Darwish

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 150
Author(s):  
Huy Xuan Ngo ◽  
Yunpeng Bai ◽  
Jingjing Sha ◽  
Shinji Ishizuka ◽  
Erina Toda ◽  
...  

The advent of bioresorbable materials to overcome limitations and replace traditional bone-reconstruction titanium-plate systems for bone fixation, thus achieving greater efficiency and safety in medical and dental applications, has ushered in a new era in biomaterial development. Because of its bioactive osteoconductive ability and biocompatibility, the forged composite of uncalcined/unsintered hydroxyapatite and poly L-lactic acid (u-HA/PLLA) has attracted considerable interest from researchers in bone tissue engineering, as well as from clinicians, particularly for applications in maxillofacial reconstructive surgery. Thus, various in vitro studies, in vivo studies, and clinical trials have been conducted to investigate the feasibility and weaknesses of this biomaterial in oral and maxillofacial surgery. Various technical improvements have been proposed to optimize its advantages and limit its disadvantages. This narrative review presents an up-to-date, comprehensive review of u-HA/PLLA, a bioactive osteoconductive and bioresorbable bone-reconstruction and -fixation material, in the context of oral and maxillofacial surgery, notably maxillofacial trauma, orthognathic surgery, and maxillofacial reconstruction. It simultaneously introduces new trends in the development of bioresorbable materials that could used in this field. Various studies have shown the superiority of u-HA/PLLA, a third-generation bioresorbable biomaterial with high mechanical strength, biocompatibility, and bioactive osteoconductivity, compared to other bioresorbable materials. Future developments may focus on controlling its bioactivity and biodegradation rate and enhancing its mechanical strength.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4435
Author(s):  
Kentaro Hata ◽  
Hiroshi Ikeda ◽  
Yuki Nagamatsu ◽  
Chihiro Masaki ◽  
Ryuji Hosokawa ◽  
...  

Poly(methyl methacrylate) (PMMA) is widely used in dental applications. However, PMMA specialized for stereolithography (SLA) additive manufacturing (3D-printing) has not been developed yet. This study aims to develop a novel PMMA-based resin for SLA 3D-printing by mixing methyl methacrylate (MMA), ethylene glycol dimethacrylate (EGDMA), and PMMA powder in various mixing ratios. The printability and the viscosity of the PMMA-based resins were examined to determine their suitability for 3D-printing. The mechanical properties (flexural strength and Vickers hardness), shear bond strength, degree of conversion, physicochemical properties (water sorption and solubility), and cytotoxicity for L929 cells of the resulting resins were compared with those of three commercial resins: one self-cured resin and two 3D-print resins. EGDMA and PMMA were found to be essential components for SLA 3D-printing. The viscosity increased with PMMA content, while the mechanical properties improved as EGDMA content increased. The shear bond strength tended to decrease as EGDMA increased. Based on these characteristics, the optimal composition was determined to be 30% PMMA, 56% EGDMA, 14% MMA with flexural strength (84.6 ± 7.1 MPa), Vickers hardness (21.6 ± 1.9), and shear bond strength (10.5 ± 1.8 MPa) which were comparable to or higher than those of commercial resins. The resin’s degree of conversion (71.5 ± 0.7%), water sorption (19.7 ± 0.6 μg/mm3), solubility (below detection limit), and cell viability (80.7 ± 6.2% at day 10) were all acceptable for use in an oral environment. The printable PMMA-based resin is a potential candidate material for dental applications.


2021 ◽  
Author(s):  
S. Giridhar Reddy

Alginates are natural polysaccharides available as seaweed products. They possess several properties due to their molecular structure made of bipolymeric α-L-Guluronic acid and β-D-Mannuronic acid polymers. Alginates have several properties such as film-forming ability, pH responsiveness, and gelling, hydrophilicity, biocompatibility, biodegradability, non-toxic, processability and ionic crosslinking. They’re commonly used in several industries, including food, pharmaceuticals, dental applications, welding rods and scaffolding. Due to their gelling and non-toxic properties, as well as their abundance in nature, the cosmetics and healthcare industries have shown a great deal of interest in biodegradable polymers in general and alginates particularly over the last few decades.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7594
Author(s):  
Zhejun Wang ◽  
Ya Shen ◽  
Markus Haapasalo

Microbes are prevalent in the root canals of necrotic teeth, and they are the cause of primary and post-treatment apical periodontitis. Bacteria can dwell within the infected root canal system as surface-adherent biofilm structures, which exhibit high resistance to antimicrobial agents. Bioceramic materials, with their biocompatible nature and excellent physico-chemical properties, have been widely used in dental applications, including endodontics. This review focuses on the application of bioceramic technology in endodontic disinfection and the antibiofilm effects of endodontic bioceramic materials. Different bioceramic materials have shown different levels of antibiofilm effects. New supplements have emerged to potentially enhance the antibiofilm properties of bioceramics aiming to achieve the goal of microbial elimination in the root canal system.


2021 ◽  
pp. 123-144
Author(s):  
Mehwish Pasha ◽  
Nawshad Muhammad ◽  
Saad Shahnawaz ◽  
Yasna Najmi ◽  
Nabiya Shahroz ◽  
...  
Keyword(s):  

Author(s):  
RAVINDER PAL SINGH ◽  
UMA BATRA

The use of artificial biomaterials has been acclaiming potential therapeutic scope in diverse clinical applications. This review started with the description of the basics of biomaterials, and desirable properties, which are the prerequisites to understand biomaterials. The orthopedic biomaterials, their classification and the importance of calcium phosphate (CaP) materials for hard-tissue applications were utterly discussed. Furthermore, among the various CaP biominerals, the importance of hydroxyapatite (HAP) and its synthesis techniques was comprehensively reviewed. The sol–gel route for the synthesis of HAP nanoparticles and deposition of coatings were systematically studied. Among the metallic substrates, Ti6Al4V alloy remained the focus of this study. Moreover, several film pre-preparation methods were also given due importance. The importance of other surface modification techniques, especially in the context of Ti6Al4V substrates, was also discussed. Among several coating techniques to deposit CaP coatings, special attention was paid to the spin and dip coating techniques. In addition to monolithic HAP coatings, reinforced and antimicrobial HAP coatings were also reviewed from broad perspectives. Therefore, this review provides an in-depth insight into the preparation and properties of apatitic nanoparticles and their coatings for orthopedic and dental applications.


Sign in / Sign up

Export Citation Format

Share Document