alkali activated binders
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 87)

H-INDEX

16
(FIVE YEARS 6)

2022 ◽  
Vol 320 ◽  
pp. 126306
Author(s):  
Jun Liu ◽  
Zhen Liang ◽  
Hesong Jin ◽  
Gediminas Kastiukas ◽  
Luping Tang ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 375
Author(s):  
Syafiadi Rizki Abdila ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Romisuhani Ahmad ◽  
Dumitru Doru Burduhos Nergis ◽  
Shayfull Zamree Abd Rahim ◽  
...  

Geopolymers, or also known as alkali-activated binders, have recently emerged as a viable alternative to conventional binders (cement) for soil stabilization. Geopolymers employ alkaline activation of industrial waste to create cementitious products inside treated soils, increasing the clayey soils’ mechanical and physical qualities. This paper aims to review the utilization of fly ash and ground granulated blast furnace slag (GGBFS)-based geopolymers for soil stabilization by enhancing strength. Previous research only used one type of precursor: fly ash or GGBFS, but the strength value obtained did not meet the ASTM D 4609 (<0.8 Mpa) standard required for soil-stabilizing criteria of road construction applications. This current research focused on the combination of two types of precursors, which are fly ash and GGBFS. The findings of an unconfined compressive strength (UCS) test on stabilized soil samples were discussed. Finally, the paper concludes that GGBFS and fly-ash-based geo-polymers for soil stabilization techniques can be successfully used as a binder for soil stabilization. However, additional research is required to meet the requirement of ASTM D 4609 standard in road construction applications, particularly in subgrade layers.


2022 ◽  
Vol 317 ◽  
pp. 125947
Author(s):  
Babatunde Abiodun Salami ◽  
Mohammed Ibrahim ◽  
Hassan Amer Algaifi ◽  
Wasiu Alimi ◽  
Adeoluwa Oladapo Ewebajo

2022 ◽  
Vol 151 ◽  
pp. 106617
Author(s):  
Vincent Trincal ◽  
Virginie Benavent ◽  
Hugo Lahalle ◽  
Bastien Balsamo ◽  
Gabriel Samson ◽  
...  

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 83
Author(s):  
Caterina Sgarlata ◽  
Alessandra Formia ◽  
Cristina Siligardi ◽  
Francesco Ferrari ◽  
Cristina Leonelli

The aim of this paper is to promote the use of mine clay washing residues for the preparation of alkali activated materials (AAMs). In particular, the influence of the calcination temperature of the clayey by-product on the geopolymerization process was investigated in terms of chemical stability and durability in water. The halloysitic clay, a mining by-product, has been used after calcination and mixed with an alkaline solution to form alkali activated binders. Attention was focused on the influence of the clay’s calcination treatment (450–500–600 °C) on the geopolymers’ microstructure of samples, remaining in the lower limit indicated by the literature for kaolinite or illite calcination. The mixtures of clay and alkali activators (NaOH 8M and Na-silicate) were cured at room temperature for 28 days. The influence of solid to liquid ratio in the mix formulation was also tested in terms of chemical stability measuring the pH and the ionic conductivity of the eluate after 24-h immersion time in water. The results reported values of ionic conductivity higher for samples made with untreated clay or with low temperature of calcination (≥756 mS/m) compared with values of samples made with calcined clay (292 mS/m). This result suggests that without a proper calcination of the as-received clay it was not possible to obtain 25 °C-consolidated AAMs with good chemical stability and dense microstructure. The measures of integrity test, pH, and ionic conductivity in water confirmed that the best sample is made with calcined clay at 600 °C, being similar (53% higher ionic conductivity of the eluate) or equal (integrity test and pH) to values recorded for the metakaolin-based geopolymer considered the reference material. These results were reflected in term of reticulation and morphology of samples through the analysis with scanning electron microscope (SEM) and X-ray diffraction (XRD), which show a dense and homogeneous microstructure predominantly amorphous with minor amounts of quartz, halloysite, and illite crystalline phases. Special attention was dedicated to this by-product to promote its use, given that kaolinite (and metakaolin), as primary mineral product, has a strong impact on the environment. The results obtained led us to consider this halloysite clay very interesting as an aluminosilicate precursor, and extensively deepening its properties and reactivity for the alkaline activation. In fact, the heart of this work is to study the possibility of reusing this by-product of an industrial process to obtain more sustainable high-performance binders.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sarah Fernando ◽  
Chamila Gunasekara ◽  
David W. Law ◽  
M. C. M. Nasvi ◽  
Sujeeva Setunge ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
H. S. Abhishek ◽  
Shreelaxmi Prashant ◽  
Muralidhar V. Kamath ◽  
Mithesh Kumar

AbstractThis paper describes a review of the state-of-the-art research carried on the fresh and hardened properties of Alkali Activated Binders and Concretes. Though, many research have been carried out in the recent times on alkali activated binders, few key parameters still remain unattended, that restricts the commercial application of AAMs to the general construction activities. Fresh properties, mechanical strength and durability performance of Alkali activated concrete with various Alumino silicates as base materials is mentioned. An essential parameter of Alkali activated concrete is the concentration of alkaline solution on which various properties like mechanical strength, setting time and durability depends. Influence of wide range of concentrations from 6 to 16 M on these properties are studied and reported in this paper. This paper mainly concentrates on properties of readily available base materials such as Fly ash and Slag and the means to improve their performance through the use of various industrial and agro-based byproducts as additives. Problems pertaining to practical applicability of AAMs to general construction activities are also highlighted.


Author(s):  
Noureddine Ouffa ◽  
Romain Trauchessec ◽  
Mostafa Benzaazoua ◽  
André Lecomte ◽  
Tikou Belem

Sign in / Sign up

Export Citation Format

Share Document