digital terrain
Recently Published Documents


TOTAL DOCUMENTS

1373
(FIVE YEARS 376)

H-INDEX

54
(FIVE YEARS 8)

Quaternary ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Matthew D. Howland ◽  
Anthony Tamberino ◽  
Ioannis Liritzis ◽  
Thomas E. Levy

This paper tests the suitability of automated point cloud classification tools provided by the popular image-based modeling (IBM) software package Agisoft Metashape for the generation of digital terrain models (DTMs) at moderately-vegetated archaeological sites. DTMs are often required for various forms of archaeological mapping and analysis. The suite of tools provided by Agisoft are relatively user-friendly as compared to many point cloud classification algorithms and do not require the use of additional software. Based on a case study from the Mycenaean site of Kastrouli, Greece, the mostly-automated, geometric classification tool “Classify Ground Points” provides the best results and produces a quality DTM that is sufficient for mapping and analysis. Each of the methods tested in this paper can likely be improved through manual editing of point cloud classification.


Author(s):  
Augusto Pérez-Alberti

There are several coastal classifications. Most of them have been elaborated worldwide using tectonic, climatic, topographic, or oceanographic criteria. Other classifications have been generated on a larger scale and focused on classifying the coastal forms, as cliffs, beaches, estuaries, lagoons, or dune complexes in different places.This project analyzes the types of coastlines, understanding as such each sector that presents certain topographic conditions marked by the elevation and slope, and that was modeled on a concrete type of rock in a specific climatic and marine environment. This paper describes a methodological approach for a detailed scale classification. This approach based on the delimitation of the different coastal systems, exemplified in cliffs and boulder beaches, sandy beaches, and dunes. In this case the shore platforms, marshes and lagoons have not been considered for the technical problems derived from the LiDAR data source, from which the 2 m spatial resolution digital terrain models (DTM) are derived.The first step in the classification was a manual delimitation combining DTMs and orthophotographs. Subsequently, other typification has been carried out through the automatic creation of Coastal Topographic Units (CTU). This index is the combination of two variables: coastal elevation and slope. The possible integration of others, such as orientation or lithology, is possible, but generate a very high number of units and make it difficult to interpret. For this reason, this study did not consider more variables.In this project 30 CTUs was generated, and then selecting only those that appear in the cliffs, boulder beaches, sandy beaches, and coastal dunes sectors. The possibility of viewing one or several CTUs in any sector of the coast allows to know more accurately the conditions of each sector and these categories could be improve the coastal management plans.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 509
Author(s):  
Dipayan Mitra ◽  
Aranee Balachandran ◽  
Ratnasingham Tharmarasa

Airborne angle-only sensors can be used to track stationary or mobile ground targets. In order to make the problem observable in 3-dimensions (3-D), the height of the target (i.e., the height of the terrain) from the sea-level is needed to be known. In most of the existing works, the terrain height is assumed to be known accurately. However, the terrain height is usually obtained from Digital Terrain Elevation Data (DTED), which has different resolution levels. Ignoring the terrain height uncertainty in a tracking algorithm will lead to a bias in the estimated states. In addition to the terrain uncertainty, another common source of uncertainty in angle-only sensors is the sensor biases. Both these uncertainties must be handled properly to obtain better tracking accuracy. In this paper, we propose algorithms to estimate the sensor biases with the target(s) of opportunity and algorithms to track targets with terrain and sensor bias uncertainties. Sensor bias uncertainties can be reduced by estimating the biases using the measurements from the target(s) of opportunity with known horizontal positions. This step can be an optional step in an angle-only tracking problem. In this work, we have proposed algorithms to pick optimal targets of opportunity to obtain better bias estimation and algorithms to estimate the biases with the selected target(s) of opportunity. Finally, we provide a filtering framework to track the targets with terrain and bias uncertainties. The Posterior Cramer–Rao Lower Bound (PCRLB), which provides the lower bound on achievable estimation error, is derived for the single target filtering with an angle-only sensor with terrain uncertainty and measurement biases. The effectiveness of the proposed algorithms is verified by Monte Carlo simulations. The simulation results show that sensor biases can be estimated accurately using the target(s) of opportunity and the tracking accuracies of the targets can be improved significantly using the proposed algorithms when the terrain and bias uncertainties are present.


2022 ◽  
Vol 14 (1) ◽  
pp. 218
Author(s):  
Bin Li ◽  
Guangpeng Fan ◽  
Tianzhong Zhao ◽  
Zhuo Deng ◽  
Yonghui Yu

The new generation of satellite-borne laser radar Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) data has been successfully used for ground information acquisition. However, when dealing with complex terrain and dense vegetation cover, the accuracy of the extracted understory Digital Terrain Model (DTM) is limited. Therefore, this paper proposes a photon correction data processing method based on ICESat-2 to improve the DTM inversion accuracy in complex terrain and high forest coverage areas. The correction value is first extracted based on the ALOS PALSAR DEM reference data to correct the cross-track photon data of ICESat-2. The slope filter threshold is then selected from the reference data, and the extracted possible ground photons are slope filtered to obtain accurate ground photons. Finally, the impacts of cross-track photon and slope filtering on fine ground extraction from the ICESat-2 data are discussed. The results show that the proposed photon correction and slope filtering algorithms help to improve the extraction accuracy of forest DTM in complex terrain areas. Compared with the forest DTM extracted without the photon correction and slope filtering methods, the MAE (Mean Absolute Error) and RMSE (Root Mean Square Error) are reduced by 51.90~57.82% and 49.37~53.55%, respectively. To the best of our knowledge, this is the first study demonstrating that photon correction can improve the terrain inversion ability of ICESat-2, while providing a novel method for ground extraction based on ICESat-2 data. It provides a theoretical basis for the accurate inversion of canopy parameters for ICESat-2.


2021 ◽  
Vol 23 (3) ◽  
pp. 25-42
Author(s):  
Crystal Shelby-Caffey

It is important for all educators, but especially those working in P-12 systems, to not only be prepared to navigate the digital terrain but to do so while taking a critical stance and encouraging students to critically examine and confront injustice. To that end, this article spotlights the work being done in a literacy methods course for preservice teachers. Consideration is given to efforts to engage preservice teachers in the integration of information communication technologies (ICTs) in ways that develop critical consciousness while promoting social justice and equity.


2021 ◽  
Vol 14 (1) ◽  
pp. 78
Author(s):  
Wenyi Lu ◽  
Tsuyoshi Okayama ◽  
Masakazu Komatsuzaki

Unmanned aerial vehicle (UAV) photogrammetry was used to monitor crop height in a flooded paddy field. Three multi-rotor UAVs were utilized to conduct flight missions in order to capture RGB (RedGreenBlue) and multispectral images, and these images were analyzed using several different models to provide the best results. Two image sets taken by two UAVs, mounted with RGB cameras of the same resolution and Global Navigation Satellite System (GNSS) receivers of different accuracies, were applied to perform photogrammetry. Two methods were then proposed for creating crop height models (CHMs), one of which was denoted as the M1 method and was based on the Digital Surface Point Cloud (DSPC) and the Digital Terrain Point Cloud (DSPT). The other was denoted as the M2 method and was based on the DSPC and a bathymetric sensor. An image set taken by another UAV mounted with a multispectral camera was used for multispectral-based photogrammetry. A Normal Differential Vegetation Index (NDVI) and a Vegetation Fraction (VF) were then extracted. A new method based on multiple linear regression (MLR) combining the NDVI, the VF, and a Soil Plant Analysis Development (SPAD) value for estimating the measured height (MH) of rice was then proposed and denoted as the M3 method. The results show that the M1 method, the UAV with a GNSS receiver with a higher accuracy, obtained more reliable estimations, while the M2 method, the UAV with a GNSS receiver of moderate accuracy, was actually slightly better. The effect on the performance of CHMs created by the M1 and M2 methods is more negligible in different plots with different treatments; however, remarkably, the more uniform the distribution of vegetation over the water surface, the better the performance. The M3 method, which was created using only a SPAD value and a canopy NDVI value, showed the highest coefficient of determination (R2) for overall MH estimation, 0.838, compared with other combinations.


2021 ◽  
Vol 13 (24) ◽  
pp. 5097
Author(s):  
Michael T. Bland ◽  
Randolph L. Kirk ◽  
Donna M. Galuszka ◽  
David P. Mayer ◽  
Ross A. Beyer ◽  
...  

Jupiter’s moon Europa harbors one of the most likely environments for extant extraterrestrial life. Determining whether Europa is truly habitable requires understanding the structure and thickness of its ice shell, including the existence of perched water or brines. Stereo-derived topography from images acquired by NASA Galileo’s Solid State Imager (SSI) of Europa are often used as a constraint on ice shell structure and heat flow, but the uncertainty in such topography has, to date, not been rigorously assessed. To evaluate the current uncertainty in Europa’s topography we generated and compared digital terrain models (DTMs) of Europa from SSI images using both the open-source Ames Stereo Pipeline (ASP) software and the commercial SOCET SET® software. After first describing the criteria for assessing stereo quality in detail, we qualitatively and quantitatively describe both the horizontal resolution and vertical precision of the DTMs. We find that the horizontal resolution of the SOCET SET® DTMs is typically 8–11× the root mean square (RMS) pixel scale of the images, whereas the resolution of the ASP DTMs is 9–13× the maximum pixel scale of the images. We calculate the RMS difference between the ASP and SOCET SET® DTMs as a proxy for the expected vertical precision (EP), which is a function of the matching accuracy and stereo geometry. We consistently find that the matching accuracy is ~0.5 pixels, which is larger than well-established “rules of thumb” that state that the matching accuracy is 0.2–0.3 pixels. The true EP is therefore ~1.7× larger than might otherwise be assumed. In most cases, DTM errors are approximately normally distributed, and errors that are several times the derived EP occur as expected. However, in two DTMs, larger errors (differences) occur and correlate with real topography. These differences primarily result from manual editing of the SOCET SET® DTMs. The product of the DTM error and the resolution is typically 4–8 pixel2 if calculated using the RMS image scale for SOCET SET® DTMs and the maximum images scale for the ASP DTMs, which is consistent with recent work using martian data sets and suggests that the relationship applies more broadly. We evaluate how ASP parameters affect DTM quality and find that using a smaller subpixel refinement kernel results in DTMs with smaller (better) resolution but, in some cases, larger gaps, which are sometimes reduced by increasing the size of the correlation kernel. We conclude that users of ASP should always systematically evaluate the choice of parameters for a given dataset.


2021 ◽  
Author(s):  
◽  
Vanisha Pullan

<p>The Havre Trough back arc system located behind the Kermadec Arc, in the southwest Pacific, is a classic example of an intra-oceanic back arc system. Subduction driven magmatism is focused at the arc front, and melting in the back arc is accompanied by back arc rifting. This study examines the deep back arc basins of the southern Havre Trough. Compared to the well-studied Kermadec Arc front volcanoes, the back arc basins remain poorly explored, yet are important features in understanding key structural and geochemical dynamics of the subduction system.  The back arc is characterised by areas of deeper basins and constructional cross-arc volcanic edifices, which had previously been attributed to ‘rift regime’ and ‘arc regime’, respectively. In this study, recently acquired multibeam data was used to produce digital terrain maps that show individual basins within the Havre Trough that host a range of different morphological features, such as elongated ridges, nearly-flat basin floors, and small volcanic cones. Lavas dredged from the 10 basins were analysed, eight of which sample the rift regime and two sample the arc regime.  The back arc basin lavas are basalts to basaltic-andesites and show fractionation of olivine + pyroxene ± plagioclase mineral assemblages. Olivine phenocrysts were tested for chemical equilibrium and predominantly show that crystallisation occurred in equilibrium with host melts. However, petrographic features such as dissolution and zoning within plagioclase show evidence of multistage magmatic evolution.  Whole rock trace element geochemistry reveals trace element characteristics typical of volcanic arc lavas, such as enrichments in large ion lithophile elements (LILE) and Pb relative to high field strength elements (HFSE). From west to east, the back arc basin lavas show a decrease in NbN/YbN, consistent with trench perpendicular flow and progressive melt extraction towards the volcanic front. There is also a broad correlation between NbN/YbN and distance along the strike of the subduction zone. This may suggest a component of trench parallel flow of the mantle wedge, with increasing depletion northwards, although further evidence is needed to rule out pre-existing mantle heterogeneity.  Ba/Th values, which trace the addition of slab-derived aqueous fluids, decrease with distance from the arc front. This indicates that the aqueous fluid component becomes less prominent with increasing distance from the arc front. Conversely, the basin lavas exhibit broadly increasing LaN/SmN values with distance from the arc front. As LaN/SmN can be used to trace the deep subduction component, i.e. sediment melt contribution, greater LaN/SmN suggests increasing contribution of a sediment signature away from the arc front. The parameters that measure recycled component flux are comparable between rift and arc regimes, so it is unlikely that increased volatile fluxing leads to the larger concentrations of magmatic activity displayed in arc regimes. Gill volcano (arc regime) has similar to higher NbN/YbN than lavas from adjacent basins, suggesting increased magmatic activity may in part relate to pockets of more fertile mantle. This study shows that back arcs and associated volcanism can be complicated, further research is integral in determining mechanisms for voluminous magmatic activity spread throughout the back arc.</p>


2021 ◽  
Author(s):  
◽  
Vanisha Pullan

<p>The Havre Trough back arc system located behind the Kermadec Arc, in the southwest Pacific, is a classic example of an intra-oceanic back arc system. Subduction driven magmatism is focused at the arc front, and melting in the back arc is accompanied by back arc rifting. This study examines the deep back arc basins of the southern Havre Trough. Compared to the well-studied Kermadec Arc front volcanoes, the back arc basins remain poorly explored, yet are important features in understanding key structural and geochemical dynamics of the subduction system.  The back arc is characterised by areas of deeper basins and constructional cross-arc volcanic edifices, which had previously been attributed to ‘rift regime’ and ‘arc regime’, respectively. In this study, recently acquired multibeam data was used to produce digital terrain maps that show individual basins within the Havre Trough that host a range of different morphological features, such as elongated ridges, nearly-flat basin floors, and small volcanic cones. Lavas dredged from the 10 basins were analysed, eight of which sample the rift regime and two sample the arc regime.  The back arc basin lavas are basalts to basaltic-andesites and show fractionation of olivine + pyroxene ± plagioclase mineral assemblages. Olivine phenocrysts were tested for chemical equilibrium and predominantly show that crystallisation occurred in equilibrium with host melts. However, petrographic features such as dissolution and zoning within plagioclase show evidence of multistage magmatic evolution.  Whole rock trace element geochemistry reveals trace element characteristics typical of volcanic arc lavas, such as enrichments in large ion lithophile elements (LILE) and Pb relative to high field strength elements (HFSE). From west to east, the back arc basin lavas show a decrease in NbN/YbN, consistent with trench perpendicular flow and progressive melt extraction towards the volcanic front. There is also a broad correlation between NbN/YbN and distance along the strike of the subduction zone. This may suggest a component of trench parallel flow of the mantle wedge, with increasing depletion northwards, although further evidence is needed to rule out pre-existing mantle heterogeneity.  Ba/Th values, which trace the addition of slab-derived aqueous fluids, decrease with distance from the arc front. This indicates that the aqueous fluid component becomes less prominent with increasing distance from the arc front. Conversely, the basin lavas exhibit broadly increasing LaN/SmN values with distance from the arc front. As LaN/SmN can be used to trace the deep subduction component, i.e. sediment melt contribution, greater LaN/SmN suggests increasing contribution of a sediment signature away from the arc front. The parameters that measure recycled component flux are comparable between rift and arc regimes, so it is unlikely that increased volatile fluxing leads to the larger concentrations of magmatic activity displayed in arc regimes. Gill volcano (arc regime) has similar to higher NbN/YbN than lavas from adjacent basins, suggesting increased magmatic activity may in part relate to pockets of more fertile mantle. This study shows that back arcs and associated volcanism can be complicated, further research is integral in determining mechanisms for voluminous magmatic activity spread throughout the back arc.</p>


2021 ◽  
Vol 19 (1) ◽  
pp. 56-73
Author(s):  
O. H. ADEDEJI ◽  
O. O. OLAYINKA ◽  
T. OGUNDIRAN ◽  
O. O. TOPE-AJAYI

This study assessed urban flood impact, flood water quality and vulnerability around Olodo area of Ibadan region, Nigeria. The study employed remote sensing and GIS techniques in creating vulnerability and risk maps. Digital terrain model (DTM) was used to get the topography of the study area. Footprints of buildings along the Egberi riverbank and flood plain in Olodo were created in the GIS environment from high resolution satellite imagery. Buffering operation was conducted to classify the buildings into risk zones based on closeness to the riverbank using ArcGIS 10.0. The study revealed that 326 buildings were within the very vulnerable and vulnerable zones because they were less than 15.2m away from the riverbank. The characteristics of water quality change during the flood and non-flood periods. TSS, DO, NOD, and COD were all higher during the flood event. Microbial analysis showed that water quality levels in the floodwater exceeded water quality standards (e.g., the coliform excess from 10 to 10,000 times), and thus this may be a health risk for local people during flood events. Concentration of Escherichia coli (E. coli) ranged from 484 to 1290 cfu/100 mL during flooding compared to 192 to 295 cfu/100 mL after flood. Salmonella was found to be high ranging from 659 to 1840 cfu/100 mL during flooding compared to 530 to 1034 cfu/100 mL after flooding.      


Sign in / Sign up

Export Citation Format

Share Document