williamson fluid
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 92)

H-INDEX

24
(FIVE YEARS 7)

Author(s):  
M. Naveed ◽  
Z. Abbas ◽  
M. Imran

The main objective of the present article is to provide an analytical simulation for time dependent boundary layer flow of non-Newtonian Williamson fluid due to stretchable curved oscillatory Riga surface. Also the characteristics of heat and mass transport are studied under the influence of variable thermal conductivity and diffusivity along with convective heat and mass boundary conditions. Additionally, energy equation is also characterized with the impact of heat production. Curvilinear coordinate scheme is followed to attain the boundary layer expressions for the flow model. The governing nonlinear partial differential equations are solved analytically via homotopy analysis method (HAM). Graphs are plotted to examine comprehensively the consequences of various concerned parameters like modified magnetic parameter and radius of curvature, Williamson fluid parameter, relation of the surface's oscillating frequency to its stretching rate constant, Prandtl number, variable conductivity and heat production parameters, Schmidt number and variable diffusivity parameter on concentration, temperature, pressure and velocity profile. Also the outcomes of afore said variables on surface drag force, rate of temperature and mass transmission (Nusselt and Sherwood numbers) are shown in tabular form. The liquid velocity amplitude is enhanced with modified magnetic parameter and shows opposite behavior for Williamson fluid parameter.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Kamran Ahmed ◽  
Tanvir Akbar ◽  
Taseer Muhammad

This article is concerned with the fluid mechanics of MHD steady 2D flow of Williamson fluid over a nonlinear stretching curved surface in conjunction with homogeneous-heterogeneous reactions with convective boundary conditions. An effective similarity transformation is considered that switches the nonlinear partial differential equations riveted to ordinary differential equations. The governing nonlinear coupled differential equations are solved by using MATLAB bvp4c code. The physical features of nondimensional Williamson fluid parameter λ , power-law stretching index m , curvature parameter K , Schmidt number Sc , magnetic field parameter M , Prandtl number Pr , homogeneous reaction strength k 1 , heterogeneous reaction strength k 2 , and Biot number γ are presented through the graphs. The tabulated form of results is obtained for the skin friction coefficient. It is noted that both the homogeneous and heterogeneous reaction strengths reduced the concentration profile.


Author(s):  
NS Shashikumar ◽  
K. Thriveni ◽  
Macha Madhu ◽  
B. Mahanthesh ◽  
BJ Gireesha ◽  
...  

The main theme of the current work is to investigate the flow and heat transport characteristics of non-Newtonian Williamson fluid in an inclined micro-channel along with entropy generation analysis. The significance of the thermal radiation, convective boundary condition, and multiple slip effects is explored. The entropy generation of the system has been analyzed by adopting the 2nd law of thermodynamics. The rheological expressions of the Williamson fluid model are also taken into account. The nonlinear system is tackled by using the finite element method. An appropriate comparison has been made with previously published results in the literature as a limiting case of the considered problem. The comparison confirmed an excellent agreement. Detailed discussion of the significance of effective parameters on Bejan number, entropy generation rate, temperature and velocity is presented through graphs. The numerical results portray that the entropy generation and Bejan number have escalating behavior to the higher value of angle of inclination. Furthermore, the Bejan number changing its behavior at two points for different values of Reynolds’ number.


Author(s):  
N.S. Shashikumar ◽  
Macha Madhu ◽  
S. Sindhu ◽  
B.J. Gireesha ◽  
Naikoti Kishan

Author(s):  
Nur Syamilah Arifin ◽  
Abdul Rahman Mohd Kasim ◽  
Syazwani Mohd Zokri ◽  
Mohd Zuki Salleh

Numerical investigation of the boundary layer flow of Williamson fluid with the presence of dust particles over a stretching sheet is carried out by taking into account the variable viscosity effect and Newtonian heating boundary condition. The genuinely two-phase flow model which has been proved to be compatible to present the mutual relationship between non-Newtonian fluid and solid particles is considered in this present study. To be precise, the governing equations are initially transformed into ordinary differential equations through formulation process before proceeding further with the numerical computation by using Keller-box method. The resulting equations are then programmed in Matlab software. The obtained numerical results are validated with existing study found in open literature and a good agreement is achieved. The influence of pertinent parameters on velocity and temperature profiles, skin friction coefficient together with Nusselt number is presented in graphical and tabular forms. Results revealed that the increasing Williamson parameter decreases the fluid velocity of both fluid and dust phases. It is expected that the present numerical results could conceivably help in predicting the boundary layer problem arising in two-phase flow in the future.


Sign in / Sign up

Export Citation Format

Share Document