strange stars
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 46)

H-INDEX

35
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Huaimin Chen ◽  
Cheng-Jun Xia ◽  
Guang-Xiong Peng

Abstract The properties of strange quark matter and the structures of (proto-)strange stars are studied within the framework of a baryon density-dependent quark mass model, where a new quark mass scaling and self-consistent thermodynamic treatment are adopted. Our results show that the perturbative interaction has a strong impact on the properties of strange quark matter. It is found that the energy per baryon increases with temperature, while the free energy decreases and eventually becomes negative. At fixed temperatures, the pressure at the minimum free energy per baryon is zero, suggesting that the thermodynamic self-consistency is preserved. Additionally, the sound velocity v in quark matter approaches to the extreme relativistic limit (c=p3) as the density increases. By increasing the strengths of confinement parameter D and perturbation parameter C, the tendency for v to approach the extreme relativistic limit at high density is slightly weakened. For (proto-)strange stars, in contrast to the quark mass scalings adopted in previous publications, the new quark mass scaling can accommodate massive proto-strange stars with their maximum mass surpassing twice the solar mass by considering the isentropic stages along the star evolution line, where the entropy per baryon of the star matter was set to be 0.5 and 1 with the lepton fraction Yl=0.4.


2022 ◽  
Vol 367 (1) ◽  
Author(s):  
Sajahan Molla ◽  
Masum Murshid ◽  
Mehedi Kalam

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Theophanes Grammenos ◽  
Farook Rahaman ◽  
Saibal Ray ◽  
Debabrata Deb ◽  
Sourav Roy Chowdhury

The possibility of strange stars mixed with dark energy to be one of the candidates for dark energy stars is the main issue of the present study. Our investigation shows that quark matter atcs as dark energy after a certain yet unknown critical condition inside the quark stars. Our proposed model reveals that strange stars mixed with dark energy feature a physically acceptable stable model and mimic characteristics of dark energy stars. The plausible connections are shown through the mass-radius relation as well as the entropy and temperature. We particularly note that a two-fluid distribution is a major reason for the anisotropic nature of the spherical stellar system.


2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Shu-Hua Yang ◽  
Chun-Mei Pi ◽  
Xiao-Ping Zheng

2021 ◽  
Vol 65 (10) ◽  
pp. 1048-1053
Author(s):  
M. Sharif ◽  
A. Majid

2021 ◽  
Vol 36 (29) ◽  
Author(s):  
Joaquin Estevez-Delgado ◽  
Modesto Pineda Duran ◽  
Arthur Cleary-Balderas ◽  
Noel Enrique Rodríguez Maya ◽  
José Martínez Peña

Starting from a regular, static and spherically symmetric spacetime, we present a stellar model formed by two sources of ordinary and quintessence matter both with anisotropic pressures. The ordinary matter, with density [Formula: see text], is formed by a fluid with a state equation type Chaplygin [Formula: see text] for the radial pressure. And the quintessence matter, with density [Formula: see text], has a state equation [Formula: see text] for the radial pressure and [Formula: see text] for the tangential pressure with [Formula: see text]. The model satisfies the required conditions to be physically acceptable and additionally the solution is potentially stable, i.e. [Formula: see text] according to the cracking concept, and it also satisfies the Harrison–Zeldovich–Novikov criteria. We describe in a graphic manner the behavior of the solution for the case in which the mass is [Formula: see text] and radius [Formula: see text][Formula: see text]km which matches the star EXO 1785-248, from where we obtain the maximum density [Formula: see text] for the values of the parameters [Formula: see text], [Formula: see text].


Author(s):  
Ertan Gudekli ◽  
M. Junaid Kamran ◽  
M. Zubair ◽  
Iftikhar Ahmed
Keyword(s):  

2021 ◽  
Vol 208 (3) ◽  
pp. 1299-1316
Author(s):  
I. G. Salako ◽  
D. R. Boko ◽  
G. F. Pomalegni ◽  
M. Z. Arouko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document