rock glacier
Recently Published Documents


TOTAL DOCUMENTS

420
(FIVE YEARS 123)

H-INDEX

41
(FIVE YEARS 5)

Author(s):  
Johannes Buckel ◽  
Eike Reinosch ◽  
Anne Voigtländer ◽  
Michael Dietze ◽  
Matthias Bücker ◽  
...  

2021 ◽  
Vol 13 (23) ◽  
pp. 4738
Author(s):  
Xuefei Zhang ◽  
Min Feng ◽  
Hong Zhang ◽  
Chao Wang ◽  
Yixian Tang ◽  
...  

Rock glaciers represent typical periglacial landscapes and are distributed widely in alpine mountain environments. Rock glacier activity represents a critical indicator of water reserves state, permafrost distribution, and landslide disaster susceptibility. The dynamics of rock glacier activity in alpine periglacial environments are poorly quantified, especially in the central Himalayas. Multi-temporal Interferometric Synthetic Aperture Radar (MT-InSAR) has been shown to be a useful technique for rock glacier deformation detection. In this study, we developed a multi-baseline persistent scatterer (PS) and distributed scatterer (DS) combined MT-InSAR method to monitor the activity of rock glaciers in the central Himalayas. In periglacial landforms, the application of the PS interferometry (PSI) method is restricted by insufficient PS due to large temporal baseline intervals and temporal decorrelation, which hinder comprehensive measurements of rock glaciers. Thus, we first evaluated the rock glacier interferometric coherence of all possible interferometric combinations and determined a multi-baseline network based on rock glacier coherence; then, we constructed a Delaunay triangulation network (DTN) by exploiting both PS and DS points. To improve the robustness of deformation parameters estimation in the DTN, we combined the Nelder–Mead algorithm with the M-estimator method to estimate the deformation rate variation at the arcs of the DTN and introduced a ridge-estimator-based weighted least square (WLR) method for the inversion of the deformation rate from the deformation rate variation. We applied our method to Sentinel-1A ascending and descending geometry data (May 2018 to January 2019) and obtained measurements of rock glacier deformation for 4327 rock glaciers over the central Himalayas, at least more than 15% detecting with single geometry data. The line-of-sight (LOS) deformation of rock glaciers in the central Himalayas ranged from −150 mm to 150 mm. We classified the active deformation area (ADA) of all individual rock glaciers with the threshold determined by the standard deviation of the deformation map. The results show that 49% of the detected rock glaciers (monitoring rate greater than 30%) are highly active, with an ADA ratio greater than 10%. After projecting the LOS deformation to the steep slope direction and classifying the rock glacier activity following the IPA Action Group guideline, 12% of the identified rock glaciers were classified as active and 86% were classified as transitional. This research is the first multi-baseline, PS, and DS network-based MT-InSAR method applied to detecting large-scale rock glaciers activity.


CATENA ◽  
2021 ◽  
Vol 206 ◽  
pp. 105562
Author(s):  
Nicoletta Cannone ◽  
Silvia Piccinelli

Author(s):  
Cristian Daniel Villarroel ◽  
Diana Agostina Ortiz ◽  
Ana Paula Forte ◽  
Guillermo Tamburini Beliveau ◽  
David Ponce ◽  
...  

2021 ◽  
Author(s):  
Robert G. Way ◽  
Yifeng Wang ◽  
Alexandre R. Bevington ◽  
Philip P. Bonnaventure ◽  
Jake R. Burton ◽  
...  
Keyword(s):  

2021 ◽  
Vol 15 (10) ◽  
pp. 4823-4844
Author(s):  
George Brencher ◽  
Alexander L. Handwerger ◽  
Jeffrey S. Munroe

Abstract. Rock glaciers are a prominent component of many alpine landscapes and constitute a significant water resource in some arid mountain environments. Here, we employ satellite-based interferometric synthetic aperture radar (InSAR) between 2016 and 2019 to identify and monitor active and transitional rock glaciers in the Uinta Mountains (Utah, USA), an area of ∼3000 km2. We used mean velocity maps to generate an inventory for the Uinta Mountains containing 205 active and transitional rock glaciers. These rock glaciers are 11.9 ha in area on average and located at a mean elevation of 3308 m, where mean annual air temperature is −0.25 ∘C. The mean downslope velocity for the inventory is 1.94 cm yr−1, but individual rock glaciers have velocities ranging from 0.35 to 6.04 cm yr−1. To search for relationships with climatic drivers, we investigated the time-dependent motion of three rock glaciers. We found that rock glacier motion has a significant seasonal component, with rates that are more than 5 times faster during the late summer compared to the rest of the year. Rock glacier velocities also appear to be correlated with the snow water equivalent of the previous winter's snowpack. Our results demonstrate the ability to use satellite InSAR to monitor rock glaciers over large areas and provide insight into the environmental factors that control their kinematics.


Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 417
Author(s):  
Stefano Alberti ◽  
Luca Flessati

As a result of mountain permafrost creep, rock glaciers are common features in high-altitude periglacial areas. From a practical point of view, beyond their localization and inventorying, both the monitoring and prediction of their evolution due to climate changes are crucial. One of the effects of climate change is the thickening of the basal shear zone (the portion of the rock glacier where most deformations are localized), eventually leading to the development of unexpected and unprecedented (in terms of location, magnitude, frequency, and timing) instability phenomena. These phenomena bear consequences for the understanding of landscape evolution, natural hazards, and the safe and sustainable operation of high-mountain infrastructures. Most of the studies about active rock glaciers are focused on the analysis of monitoring data, while just a few studies are focused on modeling their behavior to understand their possible further evolution. The active rock glacier response is characterized by a viscous (rate-dependent) behavior, influenced by seasonal temperature oscillations, and characterized by a seasonal transition from slow to fast. In this work, a new thermo-mechanical model based on the delayed plasticity theory and calibrated on experimental results is proposed. The model is employed to evaluate the influence of geometry and forcing (air temperature) on a real rock glacier (Murtèl-Corvatsch rock glacier) creep behavior.


2021 ◽  
Vol 166 ◽  
pp. 104079
Author(s):  
Ciro Sannino ◽  
Luigimaria Borruso ◽  
Ambra Mezzasoma ◽  
Dario Battistel ◽  
Stefano Ponti ◽  
...  

2021 ◽  
Vol 2 ◽  
Author(s):  
Viktor Kaufmann ◽  
Andreas Kellerer-Pirklbauer ◽  
Gernot Seier

Rock glaciers are creep phenomena of mountain permafrost. Speed-up has been observed on several rock glaciers in recent years and attributed to climate change. Although rare, related long-term studies are nevertheless essential to bring a climate perspective to creep velocity changes. In the present study, we focused on changes both in the surface creep velocity and volume of the Leibnitzkopf rock glacier (Hohe Tauern Range, Austria) in the period 1954–2020. We applied 3D change detection using aerial images of both conventional (12 epochs between 1954 and 2018) and unmanned aerial vehicle (UAV)-based aerial surveys (2 epochs, 2019 and 2020), and combined this with ground and air temperature data. Photogrammetric processing (structure-from-motion, multi-view stereo) of the multi-temporal dataset resulted in high-resolution digital orthophotos/DOPs (5–50 cm spatial resolution) and digital elevation models/DEMs (10–50 cm grid spacing). Georeferencing was supported by five externally triangulated images from 2018, bi-temporal aerial triangulation of the image data relying on stable ground around the rock glacier, measured ground control points (2019 and 2020), and measured camera locations (PPK-GNSS) of the UAV flight in 2020. 2D displacement vectors based on the multi-temporal DOPs and/or DEMs were computed. Accuracy analyses were conducted based on geodetic measurements (2010–2020) and airborne laser scanning data (2009). Our analyses show high multi-annual and inter-annual creep velocity variabilities with maxima between 12 (1974–1981) and 576 cm/year (2019–2020), always detected in the same area of the rock glacier where surface disintegration was first observed in 2018. Our volume change analyses of the entire landform for the period 1954–2018 do not indicate any significant changes. This suggests little permafrost ice melt and/or general low ice content of the rock glacier. Analyses of the temperature data reveal a close relationship between higher temperatures and rock glacier acceleration despite the high probability of low ice content. This suggests that hydrogeological changes play an important role in the rock glacier system. The paper concludes with a summary of technical improvements and recommendations useful for rock glacier monitoring and a general view on the kinematic state of the Leibnitzkopf rock glacier.


Sign in / Sign up

Export Citation Format

Share Document