ecosystem resilience
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 64)

H-INDEX

28
(FIVE YEARS 3)

2022 ◽  
Vol 314 ◽  
pp. 108809
Author(s):  
Ying Yao ◽  
Bojie Fu ◽  
Yanxu Liu ◽  
Yan Li ◽  
Shuai Wang ◽  
...  

2022 ◽  
Vol 464 ◽  
pp. 109817
Author(s):  
Hugo Tameirão Seixas ◽  
Nathaniel A. Brunsell ◽  
Elisabete Caria Moraes ◽  
Gabriel de Oliveira ◽  
Guilherme Mataveli

2021 ◽  
Author(s):  
Donghai Wu ◽  
German G. Vargas ◽  
Jennifer S. Powers ◽  
Nate G. McDowell ◽  
Justin M. Becknell ◽  
...  

2021 ◽  
Vol 195 ◽  
pp. 104625
Author(s):  
Jingxiu Qin ◽  
Xingming Hao ◽  
Ding Hua ◽  
Haichao Hao

Climate ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 172
Author(s):  
Peter J. Kappes ◽  
Cassandra E. Benkwitt ◽  
Dena R. Spatz ◽  
Coral A. Wolf ◽  
David J. Will ◽  
...  

Climate change represents a planetary emergency that is exacerbating the loss of native biodiversity. In response, efforts promoting climate change adaptation strategies that improve ecosystem resilience and/or mitigate climate impacts are paramount. Invasive Alien Species are a key threat to islands globally, where strategies such as preventing establishment (biosecurity), and eradication, especially invasive mammals, have proven effective for reducing native biodiversity loss and can also advance ecosystem resilience and create refugia for native species at risk from climate change. Furthermore, there is growing evidence that successful eradications may also contribute to mitigating climate change. Given the cross-sector potential for eradications to reduce climate impacts alongside native biodiversity conservation, we sought to understand when conservation managers and funders explicitly sought to use or fund the eradication of invasive mammals from islands to achieve positive climate outcomes. To provide context, we first summarized available literature of the synergistic relationship between invasive species and climate change, including case studies where invasive mammal eradications served to meet climate adaptation or mitigation solutions. Second, we conducted a systematic review of the literature and eradication-related conference proceedings to identify when these synergistic effects of climate and invasive species were explicitly addressed through eradication practices. Third, we reviewed projects from four large funding entities known to support climate change solutions and/or native biodiversity conservation efforts and identified when eradications were funded in a climate change context. The combined results of our case study summary paired with systematic reviews found that, although eradicating invasive mammals from islands is an effective climate adaptation strategy, island eradications are poorly represented within the climate change adaptation and mitigation funding framework. We believe this is a lost opportunity and encourage eradication practitioners and funders of climate change adaptation to leverage this extremely effective nature-based tool into positive conservation and climate resilience solutions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marc J. S. Hensel ◽  
Brian R. Silliman ◽  
Johan van de Koppel ◽  
Enie Hensel ◽  
Sean J. Sharp ◽  
...  

AbstractInvasive consumers can cause extensive ecological damage to native communities but effects on ecosystem resilience are less understood. Here, we use drone surveys, manipulative experiments, and mathematical models to show how feral hogs reduce resilience in southeastern US salt marshes by dismantling an essential marsh cordgrass-ribbed mussel mutualism. Mussels usually double plant growth and enhance marsh resilience to extreme drought but, when hogs invade, switch from being essential for plant survival to a liability; hogs selectively forage in mussel-rich areas leading to a 50% reduction in plant biomass and slower post-drought recovery rate. Hogs increase habitat fragmentation across landscapes by maintaining large, disturbed areas through trampling of cordgrass during targeted mussel consumption. Experiments and climate-disturbance recovery models show trampling alone slows marsh recovery by 3x while focused mussel predation creates marshes that may never recover from large-scale disturbances without hog eradication. Our work highlights that an invasive consumer can reshape ecosystems not just via competition and predation, but by disrupting key, positive species interactions that underlie resilience to climatic disturbances.


2021 ◽  
Vol 13 (19) ◽  
pp. 3920
Author(s):  
Juan Miguel Giralt-Rueda ◽  
Luis Santamaria

Plant primary production is a key factor in ecosystem dynamics. In environments with high climatic variability such as the Mediterranean region, plant primary production shows strong seasonal and inter-annual fluctuations, which both drive and interplay with herbivore grazing. Knowledge on the responses of different vegetation types to the variability in both rainfall and grazing pressure by wild and domestic ungulates is a necessary starting point for the sustainable management of these ecosystems. In this work we combine a 15 year series of remote sensing data on plant production (NDVI) with meteorological (daily precipitation data) and ungulate abundance (annual counts of four species of wild and domestic ungulates: red deer, fallow deer, cattle, and horses) in an iconic protected area (the Doñana National Park, SW Spain) to (i) estimate the impact of intra- and inter-annual variation in rainfall and herbivore pressure on primary production, for each of four main vegetation types; and (ii) evaluate the potential impact of different policy (i.e., herbivore management) strategies under expected climate change scenarios. Our results show that the production of different vegetation types differed strongly in their responses to phenology (a surrogate of the effect of climatology on vegetation development), water availability (rainfall accumulated until the phenological peak), and grazing pressure. Although the density of domestic ungulates shows a linear, negative effect on the primary production of three of the four vegetation types, differences in primary production and phenology among vegetation types increase ecosystem resilience to both climatological variability and grazing pressure. Such resilience may, however, be reduced under the conditions predicted by climate change models, if the moderate predicted reduction in rainfall levels combines with moderate to high densities of domestic ungulates, resulting in important reductions in primary production that may compromise plant regeneration, leading to irreversible degradation. New management strategies taking advantage of habitat heterogeneity and phenological alternation, more flexible stocking rates, and the redistribution of management units should be considered to mitigate these effects. The use of available remote sensing data and techniques in combination with statistical models represents a valuable tool for developing, monitoring, and refining such strategies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aihong Fu ◽  
Weihong Li ◽  
Yaning Chen ◽  
Yi Wang ◽  
Haichao Hao ◽  
...  

AbstractThe Tarim River Basin in Xinjiang, China, has a typical desert riparian forest ecosystem. Analysis of the resilience of this type of ecosystem under extreme drought conditions and ecological rehabilitation projects could provide a theoretical basis for understanding ecosystem stability and resistance, and provide new ecological rehabilitation measures to improve ecosystem resilience. We employed a quantitative framework to assess net primary productivity (NPP) resilience, emphasizing four aspects of NPP dynamics: NPP, NPP stability, NPP resistance, and maximum NPP potential. We compared ecosystem resilience across four time periods: before the implementation of ecological rehabilitation projects (1990–2000), during construction and partial implementation of ecological rehabilitation projects (2001–2012), during the initial project stage of ecological rehabilitation (2013–2015), and during the late project stage of ecological rehabilitation (2016–2018). There are three main finding of this research. (1) Mean NPP was increased significantly from 2013 and was decreased from 2016, especially in the main stream of the Tarim River and in the basins of eight of its nine tributary rivers. (2) Ecosystem resilience in 2013–2018 was greater than in 1990–2012, with the greatest NPP stability, mean NPP and NPP resistance, especially in part one of the river basin (the Aksu River, the Weigan-Kuche River, the Dina River, the Kaidu-Konqi River, and the main stream of the Tarim River). Ecosystem resilience in 2001–2012 was lowest when compared to 1990–2000 and 2013–2018, with lowest mean NPP, NPP stability, NPP resistance and maximum NPP potential, particularly in part two of the river basin (the Kashigr River, the Yarkand River and the Hotan River basins). Therefore, part one was most affected by ecological restoration projects. When 2013–2018 was divided into two distinct stages, 2013–2015 and 2016–2018, resilience in the latter stage was the lowest, with lowest mean NPP, NPP resistance and maximum NPP potential, especially in the main stream of the Tarim River. This may be due to unreasonable water conveyance in 2014–2015. (3) Ecological resilience has increased significantly in 2013–2015 after the implementation of ecological water transfer projects, river regulation, and natural vegetation enclosure projects. Ecosystem resilience could continue to increase even more in the future with the continued implementation of reasonable ecological water transfer projects.


Sign in / Sign up

Export Citation Format

Share Document