src homology 3
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 15)

H-INDEX

62
(FIVE YEARS 2)

Author(s):  
Sang-Eun Lee ◽  
Eunji Cho ◽  
Soomin Jeong ◽  
Yejij Song ◽  
Seokjo Kang ◽  
...  

Src homology 3-domain growth factor receptor-bound 2-like interacting protein 1 (SGIP1), originally known as a regulator of energy homeostasis, was later found to be an ortholog of Fer/Cip4 homology domain-only (FCHo) proteins and to function during endocytosis. SGIP1α is a longer splicing variant in mouse brains that contains additional regions in the membrane phospholipid-binding domain (MP) and C-terminal region, but functional consequences with or without additional regions between SGIP1 and SGIP1α remain elusive. Moreover, many previous studies have either inadvertently used SGIP1 instead of SGIP1α or used the different isoforms with or without additional regions indiscriminately, resulting in further confusion. Here, we report that the additional region in the MP is essential for SGIP1α to deform membrane into tubules and for homo-oligomerization, and SGIP1, which lacks this region, fails to perform these functions. Moreover, only SGIP1α rescued endocytic defects caused by FCHo knock-down. Thus, our results indicate that SGIP1α, but not SGIP1, is the functional ortholog of FCHos, and SGIP1 and SGIP1α are not functionally redundant. These findings suggest that caution should be taken in interpreting the role of SGIP1 in endocytosis.


2021 ◽  
Vol 2 (2) ◽  
pp. 795-813
Author(s):  
Davy Sinnaeve ◽  
Abir Ben Bouzayene ◽  
Emile Ottoy ◽  
Gert-Jan Hofman ◽  
Eva Erdmann ◽  
...  

Abstract. Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering – they introduce conformational and dynamical biases – but their use as 19F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where Cγ-fluorinated prolines with opposite configurations of the chiral Cγ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4R)-fluoroproline and (4S)-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain.


2021 ◽  
Author(s):  
Jessica Laiman ◽  
Julie Loh ◽  
Wei-Chun Tang ◽  
Mei-Chun Chuang ◽  
Hui-Kang Liu ◽  
...  

Tight regulation of endocytosis ensures accurate control of cellular signaling and membrane dynamics, which are crucial for tissue morphogenesis and functions. Mutations of Bin1 and dynamin-2 (Dyn2), proteins that generate membrane curvature and sever endocytic invaginations, respectively, cause progressive hereditary myopathy. Here, we show that Bin1 inhibits Dyn2 via direct interaction of its SRC Homology 3 (SH3) domain with the proline-rich domain (PRD) of Dyn2. Phosphorylation of S848 of Dyn2 by GSK3α, a kinase downstream of insulin signaling, relieves Dyn2 from the inhibition of Bin1 and promotes endocytosis in muscle. Mutations of Bin1 associated with centronuclear myopathy disrupt its inhibition of Dyn2, thereby exaggerating Dyn2 fission activity and causing excessive fragmentation of T-tubules in the muscle cells. Our work reveals how Bin1-Dyn2 interaction fine-tunes membrane remodeling at the molecular level, and lay the foundation for future exploration of endocytic regulation and hereditary muscle diseases.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254917
Author(s):  
Sandeep K. N. Mulukala ◽  
Vaishnavi Kambhampati ◽  
Abrar H. Qadri ◽  
Anil K. Pasupulati

Vertebrate kidneys contribute to homeostasis by regulating electrolyte, acid-base balance, removing toxic metabolites from blood, and preventing protein loss into the urine. Glomerular podocytes constitute the blood-urine barrier, and podocyte slit-diaphragm (SD), a modified tight junction, contributes to the glomerular permselectivity. Nephrin, KIRREL1, podocin, CD2AP, and TRPC6 are crucial members of the SD that interact with each other and contribute to the SD’s structural and functional integrity. This study analyzed the distribution of these five essential SD proteins across the organisms for which the genome sequence is available. We found a diverse distribution of nephrin and KIRREL1 ranging from nematodes to higher vertebrates, whereas podocin, CD2AP, and TRPC6 are restricted to the vertebrates. Among invertebrates, nephrin and its orthologs consist of more immunoglobulin-3 domains, whereas in the vertebrates, CD80-like C2-set domains are predominant. In the case of KIRREL1 and its orthologs, more Ig domains were observed in invertebrates than vertebrates. Src Homology-3 (SH3) domain of CD2AP and SPFH domain of podocin are highly conserved among vertebrates. TRPC6 and its orthologs had conserved ankyrin repeats, TRP, and ion transport domains, except Chondrichthyes and Echinodermata, which do not possess the ankyrin repeats. Intrinsically unstructured regions (IURs) are conserved across the SD orthologs, suggesting IURs importance in the protein complexes that constitute the slit-diaphragm. For the first time, a study reports the evolutionary insights of vertebrate SD proteins and their invertebrate orthologs.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Yinchu Zhu ◽  
Jiale Ma ◽  
Yue Zhang ◽  
Xiaojun Zhong ◽  
Qiankun Bai ◽  
...  

AbstractStreptococcussuis (S.suis) is an important zoonotic pathogen that causes septicaemia, meningitis and streptococcal toxic shock-like syndrome in its host, and recent studies have shown that S.suis could be competent for natural genetic transformation. Transformation is an important mechanism for the horizontal transfer of DNA, but some elements that affect the transformation process need to be further explored. Upon entering the competent state, Streptococcus species stimulate the transcription of competence-related genes that are responsible for exogenous DNA binding, uptake and processing. In this study, we performed conserved promoter motif and qRT-PCR analyses and identified CrfP as a novel murein hydrolase that is widespread in S.suis and stimulated with a peptide pheromone in the competent state through a process controlled by ComX. A bioinformatics analysis revealed that CrfP consists of a CHAP hydrolase domain and two bacterial Src homology 3-binding (SH3b) domains. Further characterization showed that CrfP could be exported to extracellular bacterial cells and lytic S.suis strains of different serotypes, and this finding was verified by TEM and a turbidity assay. To investigate the potential effect of CrfP in vivo, a gene-deletion mutant (ΔcrfP) was constructed. Instead of stopping the natural transformation process, the inactivation of CrfP clearly reduced the effective transformation rate. Overall, these findings provide evidence showing that CrfP is important for S.suis serovar 2 competence.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaohui Duan ◽  
Yan Ma ◽  
Dongsheng Fan ◽  
Xiaoxuan Liu

The “Src homology 3 (SH3) domain and tetratricopeptide repeats 2” (SH3TC2) gene is mutated in individuals with Charcot-Marie-Tooth disease (CMT) and considered relevant to a demyelinating or intermediate subtype of CMT disease, CMT4C. In this study, we screened a cohort of 465 unrelated Chinese CMT patients alongside 650 controls. We used Sanger, next-generation, or whole-exome sequencing to analyze SH3TC2 and other CMT-related genes and identified 12 SH3TC2 variants (eight novel) in seven families. Of the eight novel variants, seven were likely pathogenic (c.280–2 A > G, c.732–1 G > A, c.1177+6 T > C, c.3328–1 G > A, G299S, R548W, L1048P), and 1 had uncertain significance (S221P). The CMT4C frequency was calculated to be 4.24% in demyelinating or intermediate CMT patients without PMP22 duplication. Additionally, we detected variant R954* in the Chinese cohort in our study, indicating that this variant may be present among Asians, albeit with a relatively low frequency. The onset age varied among the eight patients, three of whom presented scoliosis. We summarized phenotypes in the Chinese CMT cohort and concluded that the absence of scoliosis, cranial nerve involvement, or late-onset symptoms does not necessarily preclude SH3TC2 involvement in a given case.


2020 ◽  
Author(s):  
NSK Mulukala ◽  
V Kambhampati ◽  
SAH Qadri ◽  
AK Pasupulati

AbstractVertebrates kidneys contribute to the homeostasis by regulating electrolyte, acid-base balance, and prevent protein loss into the urine. Glomerular podocytes constitute blood-urine barrier and podocyte slit-diaphragm, a modified tight junction contributes to the glomerular permselectivity. Nephrin, podocin, CD2AP, and TRPC6 are considered to be crucial members, which largely interact with each other and contribute to the structural and functional integrity of the slit-diaphragm. In this study, we analyzed the distribution of these four-key slit-diaphragm proteins across the organisms for which the genome sequence is available. We found that nephrin has a diverse distribution ranging from nematodes to higher vertebrates whereas podocin, CD2AP, and TRPC6 are predominantly restricted to the vertebrates. In the invertebrates nephrin and its orthologs consist of more immunoglobulin-3 and immunoglobulin-5 domains when compared to the vertebrates wherein, CD80-like C2-set Ig2 domains were predominant. Src Homology-3 (SH3) domain of CD2AP and SPFH domain of podocin are highly conserved among vertebrates. Although the majority of the TRPC6 and its orthologs had conserved ankyrin repeats, TRP, and ion transport domains, the orthologs of TRPC6 present in Rhincodon typus and Acanthaster planci do not possess the ankyrin repeats. Intrinsically unstructured regions (IURs), which are considered to contribute to the interactions among these proteins are largely conserved among orthologs of these proteins, suggesting the importance of IURs in the protein complexes that constitute slit-diaphragm. This study for the first time reports the evolutionary insights of vertebrate slit-diaphragm proteins and its invertebrate orthologs.


Toxins ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 593
Author(s):  
Seav-Ly Tran ◽  
Delphine Cormontagne ◽  
Jasmina Vidic ◽  
Gwenaëlle André-Leroux ◽  
Nalini Ramarao

The emergence of B. cereus as an opportunistic food-borne pathogen has intensified the need to distinguish strains of public health concern. The heterogeneity of the diseases associated with B. cereus infections emphasizes the versatility of these bacteria strains to colonize their host. Nevertheless, the molecular basis of these differences remains unclear. Several toxins are involved in virulence, particularly in gastrointestinal disorders, but there are currently no biological markers able to differentiate pathogenic from harmless strains. We have previously shown that CwpFM is a cell wall peptidase involved in B. cereus virulence. Here, we report a sequence/structure/function characterization of 39 CwpFM sequences, chosen from a collection of B. cereus with diverse virulence phenotypes, from harmless to highly pathogenic strains. CwpFM is homology-modeled in silico as an exported papain-like endopeptidase, with an N-terminal end composed of three successive bacterial Src Homology 3 domains (SH3b1–3) likely to control protein–protein interactions in signaling pathways, and a C-terminal end that contains a catalytic NLPC_P60 domain primed to form a competent active site. We confirmed in vitro that CwpFM is an endopeptidase with a moderate peptidoglycan hydrolase activity. Remarkably, CwpFMs from pathogenic strains harbor a specific stretch of twenty residues intrinsically disordered, inserted between the SH3b3 and the catalytic NLPC_P60 domain. This strongly suggests this linker as a marker of differentiation between B. cereus strains. We believe that our findings improve our understanding of the pathogenicity of B. cereus while advancing both clinical diagnosis and food safety.


Sign in / Sign up

Export Citation Format

Share Document