task failure
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 70)

H-INDEX

33
(FIVE YEARS 3)

Author(s):  
Andrew M Alexander ◽  
Shane M Hammer ◽  
Kaylin D Didier ◽  
Lillie M Huckaby ◽  
Thomas J. Barstow

Maximal voluntary contraction force (MVC), potentiated twitch force (Qpot), and voluntary activation (%VA) recover to baseline within 90s following extreme-intensity exercise. However, methodological limitations masked important recovery kinetics. We hypothesized reductions in MVC, Qpot, and %VA at task failure following extreme-intensity exercise would be less than following severe-intensity exercise, and Qpot and MVC following extreme-intensity exercise would show significant recovery within 120s but remain depressed following severe-intensity exercise. Twelve subjects (6 men) completed two severe-intensity (40, 50%MVC) and two extreme-intensity (70, 80%MVC) isometric knee-extension exercise bouts to task failure (Tlim). Neuromuscular function was measured at baseline, Tlim, and through 150s of recovery. Each intensity significantly reduced MVC and Qpot compared to baseline. MVC was greater at T¬lim (p<0.01) and at 150s of recovery (p=0.004) following exercise at 80%MVC compared to severe-intensity exercise. Partial recovery of MVC and Qpot were detected within 150s following Tlim for each exercise intensity; Qpot recovered to baseline values within 150s of recovery following exercise at 80%MVC. No differences in %VA were detected pre- to post-exercise or across recovery for any intensity. Although further analysis showed sex-specific differences in MVC and Qpot, future studies should closely examine sex-dependent responses to extreme-intensity exercise. It is clear, however, that these data reinforce that mechanisms limiting exercise tolerance during extreme-intensity exercise recover quickly. NOVELTY: •Severe- and extreme-intensity exercise cause independent responses in fatigue accumulation and the subsequent recovery time courses. •Recovery of MVC and Qpot occurs much faster following extreme-intensity exercise in both men and women.


2021 ◽  
pp. 1-13
Author(s):  
Punit Gupta ◽  
Sanjeet Bhagat ◽  
Pradeep Rawat

The evolution of cloud computing is increasing exponentially which provides everything as a service. Clouds made it possible to move a huge amount of data over the networks on-demand. It removed the physical necessity of resources as resources are available virtually over the networks. Emerge of new technologies improvising the cloud system and trying to overcome cloud computing challenges like resource optimization, securities etc. Proper utilization of resources is still a primary target for the cloud system as it will increase the cost and time efficiency. Cloud is a pay-per-uses basis model which needs to perform in a flexible manner with the increase and decrease in demand on every level. In general, cloud is assumed to be non-faulty but faulty is a part of any system. This article focuses on the hybridization of Neural networks with the harmony Search Algorithm (HSA). The hybrid approach achieves a better optimal solution in a feasible time duration in the faulty environment to improve the task failure and improve reliability. The harmony Search approach is inspired from the music improvisation technique, where notes are adjusted until perfect harmony is matched. HS (Harmony search) is chosen, as it is capable to provide an optimal solution in a feasible time, even for complex optimization problems. An ANN-HS model is introduced to achieve optimal resource allocation. The presented model is inspired by Harmony Search and ANN. The proposed model considers multi-objective criteria. The performance criteria include execution time, task failure count and power consumption(Kwh).


Author(s):  
Taylor S. Thurston ◽  
Joshua C. Weavil ◽  
Thomas J. Hureau ◽  
Jayson R. Gifford ◽  
Vincent P. Georgescu ◽  
...  

This study investigated the impact of dietary nitrate supplementation on peripheral hemodynamics, the development of neuromuscular fatigue, and time to task failure during cycling exercise. Eleven recreationally active male participants (27±5 years, VO2max: 42±2ml/kg/min) performed two experimental trials following 3 days of either dietary nitrate-rich beetroot juice (4.1mmol NO3-/day; DNS) or placebo (PLA) supplementation in a blinded, counterbalanced order. Exercise consisted of constant-load cycling at 50, 75, and 100 W (4-min each) and, at ~80% of peak power output (218±12W), to task-failure. All participants returned to repeat the shorter of the two trials performed to task-failure, but with the opposite supplementation regime (ISO-time comparison). Mean arterial pressure (MAP), leg blood flow (QL; Doppler ultrasound), leg vascular conductance (LVC), and pulmonary gas exchange were continuously assessed during exercise. Locomotor muscle fatigue was determined by the change in pre- to post-exercise quadriceps twitch-torque (∆Qtw) and voluntary activation (∆VA; electrical femoral nerve stimulation). Following DNS, plasma [nitrate] (~670 vs ~180 nmol) and [nitrite] (~775 vs ~11 nmol) were significantly elevated compared to PLA. Unlike PLA, DNS lowered both QL and MAP by ~8% (P<0.05), but did not alter LVC (P=0.31). VO2 across work rates, as well as cycling time to task-failure (~7min) and locomotor muscle fatigue following the ISO-time comparison were not different between the two conditions (∆Qtw ~42%, ∆VA ~4%). Thus, despite significant hemodynamic changes, DNS did not alter the development of locomotor muscle fatigue and, ultimately, cycling time to task failure.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3311
Author(s):  
Anastasios Theodorou ◽  
Panagiotis Zinelis ◽  
Vassiliki Malliou ◽  
Panagiotis Chatzinikolaou ◽  
Nikos Margaritelis ◽  
...  

The present study aimed to investigate whether acute L-citrulline supplementation would affect inspiratory muscle oxygenation and respiratory performance. Twelve healthy males received 6 g of L-citrulline or placebo in a double-blind crossover design. Pulmonary function (i.e., forced expired volume in 1 s, forced vital capacity and their ratio), maximal inspiratory pressure (MIP), fractional exhaled nitric oxide (NO•), and sternocleidomastoid muscle oxygenation were measured at baseline, one hour post supplementation, and after an incremental resistive breathing protocol to task failure of the respiratory muscles. The resistive breathing task consisted of 30 inspirations at 70% and 80% of MIP followed by continuous inspirations at 90% of MIP until task failure. Sternocleidomastoid muscle oxygenation was assessed using near-infrared spectroscopy. One-hour post-L-citrulline supplementation, exhaled NO• was significantly increased (19.2%; p < 0.05), and this increase was preserved until the end of the resistive breathing (16.4%; p < 0.05). In contrast, no difference was observed in the placebo condition. Pulmonary function and MIP were not affected by the L-citrulline supplementation. During resistive breathing, sternocleidomastoid muscle oxygenation was significantly reduced, with no difference noted between the two supplementation conditions. In conclusion, a single ingestion of 6 g L-citrulline increased NO• bioavailability but not the respiratory performance and inspiratory muscle oxygenation.


2021 ◽  
Author(s):  
Israel Halperin ◽  
Tomer Malleron ◽  
Itai Har-Nir ◽  
Patroklos Androulakis-Korakakis ◽  
Milo Wolf ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256231
Author(s):  
Hadar Schwartz ◽  
Aviv Emanuel ◽  
Isaac Isur Rozen Samukas ◽  
Israel Halperin

Background In resistance-training (RT), the number of repetitions is traditionally prescribed using a predetermined approach (e.g., three sets of 10 repetitions). An emerging alternative is the estimated repetitions to failure (ERF) approach (e.g., terminating sets two repetitions from failure). Despite the importance of affective responses experienced during RT, a comparison between the two approaches on such outcomes is lacking. Methods Twenty women (age range: 23–45 years) without RT experience completed estimated one repetition maximum (RM) tests in four exercises. In the next two counterbalanced sessions, participants performed the exercises using 70%1RM. Participants completed ten repetitions in all three sets (predetermined condition) or terminated the sets when perceived to be two repetitions away from task-failure (ERF condition). Primary outcomes were affective-valence, enjoyment, and approach-preference and secondary outcomes were repetition-numbers completed in each exercise. Results We observed trivial differences in the subjective measures and an approximately even approach-preference split. Under the ERF condition, we observed greater variability in repetition-numbers between participants and across exercises. Specifically, the mean number of repetitions was slightly lower in the chest-press, knee-extension, and lat-pulldown (~1 repetition) but considerably higher in the leg-press (17 vs. 10, p<0.01). Conclusions Both approaches led to comparable affective responses and to an approximately even approach preference. Hence, prior to prescribing either approach, coaches should consider trainee’s preferences. Moreover, under the ERF condition participants completed a dissimilar number of repetitions across exercises while presumably reaching a similar proximity to task-failure. This finding suggests that ERF allows for better effort regulation between exercises.


Author(s):  
Jamie Pethick ◽  
Samantha L. Winter ◽  
Mark Burnley

Abstract Purpose Joint angle is a significant determinant of neuromuscular and metabolic function. We tested the hypothesis that previously reported correlations between knee-extensor torque complexity and metabolic rate ($${\text{m}\dot{\text{V}}\text{O}}_{{2}}$$ m V ˙ O 2 ) would be conserved at reduced joint angles (i.e. shorter muscle lengths). Methods Eleven participants performed intermittent isometric knee-extensor contractions at 50% maximum voluntary torque for 30 min or until task failure (whichever occurred sooner) at joint angles of 30º, 60º and 90º of flexion (0º = extension). Torque and surface EMG were sampled continuously. Complexity and fractal scaling of torque were quantified using approximate entropy (ApEn) and detrended fluctuation analysis (DFA) α. $${\text{m}\dot{\text{V}}\text{O}}_{{2}}$$ m V ˙ O 2 was determined using near-infrared spectroscopy. Results Time to task failure/end increased as joint angle decreased (P < 0.001). Over time, complexity decreased at 90º and 60º (decreased ApEn, increased DFA α, both P < 0.001), but not 30º. $${\text{m}\dot{\text{V}}\text{O}}_{{2}}$$ m V ˙ O 2 increased at all joint angles (P < 0.001), though the magnitude of this increase was lower at 30º compared to 60º and 90º (both P < 0.01). There were significant correlations between torque complexity and $${\text{m}\dot{\text{V}}\text{O}}_{{2}}$$ m V ˙ O 2 at 90º (ApEn, r =  − 0.60, P = 0.049) and 60º (ApEn, r =  − 0.64, P = 0.035; DFA α, ρ = 0.68, P = 0.015). Conclusion The lack of correlation between $${\text{m}\dot{\text{V}}\text{O}}_{{2}}$$ m V ˙ O 2 and complexity at 30º was likely due to low relative task demands, given the similar kinetics of $${\text{m}\dot{\text{V}}\text{O}}_{{2}}$$ m V ˙ O 2 and torque complexity. An inverse correlation between $${\text{m}\dot{\text{V}}\text{O}}_{{2}}$$ m V ˙ O 2 and knee-extensor torque complexity occurs during high-intensity contractions at intermediate, but not short, muscle lengths.


2021 ◽  
Author(s):  
Sridevi S ◽  
Jeevaa Katiravan Jeevaa Katiravan

Abstract Scientific workflows deserve the emerging attention in sophisticated large-scale scientific problem-solving environments. Though a single task failure occurs in workflow based applications, due to its task dependency nature the reliability of the overall system will be affected drastically. Hence rather than reactive fault tolerant approaches, proactive measures are vital in scientific workflows. This work puts forth an attempt to concentrate on the exploration issue of structuring an Exotic Intelligent Water Drops - Support Vector Regression-based approach for task failure prognostication which facilitates proactive fault tolerance in scientific workflow applications. The failure prediction models in this study have been implemented through SVR-based machine learning approaches and its precision accuracy is optimized by IWDA and various performance metrics were evaluated. The experimental results prove that the proposed approach performs better compared with the other existing techniques.


2021 ◽  
Vol 53 (8S) ◽  
pp. 335-335
Author(s):  
Jenny Zhang ◽  
Danilo Iannetta ◽  
Mohammed Alzeeby ◽  
Martin J. MacInnis ◽  
Juan M. Murias ◽  
...  

2021 ◽  
Vol 53 (8S) ◽  
pp. 26-26
Author(s):  
Robert W. Smith ◽  
Tyler J. Neltner ◽  
John Paul V. Anders ◽  
Joshua L. Keller ◽  
Terry J. Housh ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document