surgical simulations
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Stefania Marconi ◽  
Valeria Mauri ◽  
Erika Negrello ◽  
Luigi Pugliese ◽  
Andrea Pietrabissa ◽  
...  

Blood vessels anastomosis is one of the most challenging and delicate tasks to learn in many surgical specialties, especially for vascular and abdominal surgeons. Such a critical skill implies a learning curve that goes beyond technical execution. The surgeon needs to gain proficiency in adapting gestures and the amount of force expressed according to the type of tissue he/she is dealing with. In this context, surgical simulation is gaining a pivotal role in the training of surgeons, but currently available simulators can provide only standard or simplified anatomies, without the chance of presenting specific pathological conditions and rare cases. 3D printing technology, allowing the manufacturing of extremely complex geometries, find a perfect application in the production of realistic replica of patient-specific anatomies. According to available technologies and materials, morphological aspects can be easily handled, while the reproduction of tissues mechanical properties still poses major problems, especially when dealing with soft tissues. The present work focuses on blood vessels, with the aim of identifying – by means of both qualitative and quantitative tests – materials combinations able to best mimic the behavior of the biological tissue during anastomoses, by means of J750™ Digital Anatomy™ technology and commercial photopolymers from Stratasys. Puncture tests and stitch traction tests are used to quantify the performance of the various formulations. Surgical simulations involving anastomoses are performed on selected clinical cases by surgeons to validate the results. A total of 37 experimental materials were tested and 2 formulations were identified as the most promising solutions to be used for anastomoses simulation. Clinical applicative tests, specifically selected to challenge the new materials, raised additional issues on the performance of the materials to be considered for future developments.


2021 ◽  
Vol 2 ◽  
Author(s):  
Milad Zeraatpisheh ◽  
Stephane P.A. Bordas ◽  
Lars A.A. Beex

Abstract Patient-specific surgical simulations require the patient-specific identification of the constitutive parameters. The sparsity of the experimental data and the substantial noise in the data (e.g., recovered during surgery) cause considerable uncertainty in the identification. In this exploratory work, parameter uncertainty for incompressible hyperelasticity, often used for soft tissues, is addressed by a probabilistic identification approach based on Bayesian inference. Our study particularly focuses on the uncertainty of the model: we investigate how the identified uncertainties of the constitutive parameters behave when different forms of model uncertainty are considered. The model uncertainty formulations range from uninformative ones to more accurate ones that incorporate more detailed extensions of incompressible hyperelasticity. The study shows that incorporating model uncertainty may improve the results, but this is not guaranteed.


2020 ◽  
Vol 27 (6) ◽  
Author(s):  
Yu‐Hong Yeung ◽  
Alex Pothen ◽  
Jessica Crouch

2020 ◽  
Vol 28 (2) ◽  
pp. 230949902092708 ◽  
Author(s):  
Alpaslan Senkoylu ◽  
Ismail Daldal ◽  
Mehmet Cetinkaya

Rapid prototyping (RP), also known as three-dimensional printing (3DP), allows the rapid conversion of anatomical images into physical components by the use of special printers. This novel technology has also become a promising innovation for spine surgery. As a result of the developments in 3DP technology, production speeds have increased, and costs have decreased. This technological development can be used extensively in different parts of spine surgery such as preoperative planning, surgical simulations, patient–clinician communication, education, intraoperative guidance, and even implantable devices. However, similar to other emerging technologies, the usage of RP in spine surgery has various drawbacks that are needed to be addressed through further studies.


2019 ◽  
Vol 130 (6) ◽  
pp. 1937-1948 ◽  
Author(s):  
Ali Tayebi Meybodi ◽  
Arnau Benet ◽  
Vera Vigo ◽  
Roberto Rodriguez Rubio ◽  
Sonia Yousef ◽  
...  

OBJECTIVEThe expanded endoscopic endonasal approach (EEA) has shown promising results in treatment of midline skull base lesions. Several case reports exist on the utilization of the EEA for treatment of aneurysms. However, a comparison of this approach with the classic transcranial orbitozygomatic approach to the basilar apex (BAX) region is missing.The present study summarizes the results of a series of cadaveric surgical simulations for assessment of the EEA to the BAX region for aneurysm clipping and its comparison with the transcranial orbitozygomatic approach as one of the most common approaches used to treat BAX aneurysms.METHODSFifteen cadaveric specimens underwent bilateral orbitozygomatic craniotomies as well as an EEA (first without a pituitary transposition [PT] and then with a PT) to expose the BAX. The following variables were measured, recorded, and compared between the orbitozygomatic approach and the EEA: 1) number of perforating arteries counted on bilateral posterior cerebral arteries (PCAs); 2) exposure and clipping lengths of the PCAs, superior cerebellar arteries (SCAs), and proximal basilar artery; and 3) surgical area of exposure in the BAX region.RESULTSExcept for the proximal basilar artery exposure and clipping, the orbitozygomatic approach provided statistically significantly greater values for vascular exposure and control in the BAX region (i.e., exposure and clipping of ipsilateral and contralateral SCAs and PCAs). The EEA with PT was significantly better in exposing and clipping bilateral PCAs compared to EEA without a PT, but not in terms of other measured variables. The surgical area of exposure and PCA perforator counts were not significantly different between the 3 approaches. The EEA provided better exposure and control if the BAX was located ≥ 4 mm inferior to the dorsum sellae.CONCLUSIONSFor BAX aneurysms located in the retrosellar area, PT is usually required to obtain improved exposure and control for the bilateral PCAs. However, the transcranial approach is generally superior to both endoscopic approaches for accessing the BAX region. Considering the superior exposure of the proximal basilar artery obtained with the EEA, it could be a viable option when surgical treatment is considered for a low-lying BAX or mid–basilar trunk aneurysms (≥ 4 mm inferior to dorsum sellae).


2018 ◽  
Vol 12 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Woojin Cho ◽  
Alan Varkey Job ◽  
Jing Chen ◽  
Jung Hwan Baek

<p>Three-dimensional (3D) printing is a transformative technology with a potentially wide range of applications in the field of orthopaedic spine surgery. This article aims to review the current applications, limitations, and future developments of 3D printing technology in orthopaedic spine surgery. Current preoperative applications of 3D printing include construction of complex 3D anatomic models for improved visual understanding, preoperative surgical planning, and surgical simulations for resident education. Intraoperatively, 3D printers have been successfully used in surgical guidance systems and in the creation of patient specific implantable devices. Furthermore, 3D printing is revolutionizing the field of regenerative medicine and tissue engineering, allowing construction of biocompatible scaffolds suitable for cell growth and vasculature. Advances in printing technology and evidence of positive clinical outcomes are needed before there is an expansion of 3D printing applied to the clinical setting.</p>


Sign in / Sign up

Export Citation Format

Share Document