pohozaev type identity
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 37 (2) ◽  
pp. 325-338
Author(s):  
HABIBA BOULAIKI ◽  
TOUFIK MOUSSAOUI ◽  
RADU PRECUP

The aim of the present paper is to study the existence of nontrivial nonnegative solutions for a second-order boundary value problem of Kirchhoff type on the half-line. Our approach is based on variational methods, a monotonicity trick related to the mountain pass lemma, cut-off functional technique, and a Pohozaev type identity.


Author(s):  
Rodrigo Clemente ◽  
João Marcos do Ó ◽  
Pedro Ubilla

Abstract We discuss the existence, nonexistence and multiplicity of solutions for a class of elliptic equations in the unit ball with zero Dirichlet boundary conditions involving nonlinearities with supercritical growth. By using Pohozaev type identity we prove a nonexistence result for a class of supercritical problems with variable exponent which allow us to complement the analysis developed in (Calc. Var. (2016) 55:83). Moreover, we establish existence results of positive solutions for semilinear elliptic equations involving nonlinearities which are subcritical at infinity just in a part of the domain, and can be supercritical in a suitable sense.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Abdellaziz Harrabi ◽  
Cherif Zaidi

Abstract In this paper, we are concerned with Liouville-type theorems of the Hénon Lane–Emden triharmonic equations in whole space. We prove Liouville-type theorems for solutions belonging to one of the following classes: stable solutions and finite Morse index solutions (whether positive or sign-changing). Our proof is based on a combination of the Pohozaev-type identity, monotonicity formula of solutions and a blowing down sequence.


2015 ◽  
Vol 58 (4) ◽  
pp. 723-729 ◽  
Author(s):  
Alfonso Castro ◽  
Emily M. Fischer

AbstractWe show that a class of semilinear Laplace–Beltrami equations on the unit sphere in ℝn has inûnitely many rotationally symmetric solutions. The solutions to these equations are the solutions to a two point boundary value problem for a singular ordinary differential equation. We prove the existence of such solutions using energy and phase plane analysis. We derive a Pohozaev-type identity in order to prove that the energy to an associated initial value problem tends to infinity as the energy at the singularity tends to infinity. The nonlinearity is allowed to grow as fast as |s|p-1s for |s| large with 1 < p < (n + 5)/(n − 3).


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Linfen Cao ◽  
Zhaohui Dai

We consider system of integral equations related to the weighted Hardy-Littlewood-Sobolev (HLS) inequality in a half space. By the Pohozaev type identity in integral form, we present a Liouville type theorem when the system is in both supercritical and subcritical cases under some integrability conditions. Ruling out these nonexistence results, we also discuss the positive solutions of the integral system in critical case. By the method of moving planes, we show that a pair of positive solutions to such system is rotationally symmetric aboutxn-axis, which is much more general than the main result of Zhuo and Li, 2011.


2013 ◽  
Vol 15 (02) ◽  
pp. 1250054 ◽  
Author(s):  
DANIELE CASSANI ◽  
BERNHARD RUF ◽  
CRISTINA TARSI

We study the so-called limiting Sobolev cases for embeddings of the spaces [Formula: see text], where Ω ⊂ ℝn is a bounded domain. Differently from J. Moser, we consider optimal embeddings into Zygmund spaces: we derive related Euler–Lagrange equations, and show that Moser's concentrating sequences are the solutions of these equations and thus realize the best constants of the corresponding embedding inequalities. Furthermore, we exhibit a group invariance, and show that Moser's sequence is generated by this group invariance and that the solutions of the limiting equation are unique up to this invariance. Finally, we derive a Pohozaev-type identity, and use it to prove that equations related to perturbed optimal embeddings do not have solutions.


Sign in / Sign up

Export Citation Format

Share Document