bromodomain proteins
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 23)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Ethan Ashby ◽  
Lucinda Paddock ◽  
Hannah L Betts ◽  
Geneva Miller ◽  
Anya Porter ◽  
...  

Trypanosoma brucei , the causative agent of Human and Animal African trypanosomiasis, cycles between a mammalian host and a tsetse fly vector. The parasite undergoes huge changes in morphology and metabolism as it adapts to each host environment. These changes are reflected in the differing transcriptomes of parasites living in each host. While changes in the transcriptome have been well catalogued for parasites differentiating from the mammalian bloodstream to the insect stage, it remains unclear whether chromatin interacting proteins mediate transcriptomic changes during life cycle adaptation. We and others have shown that chromatin interacting bromodomain proteins localize to transcription start sites in bloodstream parasites, but whether the localization of bromodomain proteins changes as parasites differentiate from bloodstream to insect stage parasites remains unknown. To address this question, we performed Cleavage Under Target and Release Using Nuclease (CUT&RUN) timecourse experiments using a tagged version of Bromodomain Protein 3 (Bdf3) in parasites differentiating from bloodstream to insect stage forms. We found that Bdf3 occupancy at most loci increased at 3 hours following onset of differentiation and decreased thereafter. A number of sites with increased bromodomain protein occupancy lie proximal to genes known to have altered transcript levels during differentiation, such as procyclins, procyclin associated genes, and invariant surface glycoproteins. While most Bdf3 occupied sites are observed throughout differentiation, a very small number appear de novo as differentiation progresses. Notably, one such site lies proximal to the procyclin gene locus, which contains genes essential for remodeling surface proteins following transition to the insect stage. Overall, these studies indicate that occupancy of chromatin interacting proteins is dynamic during life cycle stage transitions, and provides the groundwork for future studies aimed at uncovering whether changes in bromodomain protein occupancy affect transcript levels of neighboring genes. Additionally, the optimization of CUT&RUN for use in Trypanosoma brucei may prove helpful for other researchers as an alternative to Chromatin Immunoprecipitation (ChIP).


2021 ◽  
Vol 28 (6) ◽  
pp. 4485-4503
Author(s):  
Wenyi Luo ◽  
Todd M. Stevens ◽  
Phillip Stafford ◽  
Markku Miettinen ◽  
Zoran Gatalica ◽  
...  

Nuclear protein of testis (NUT), a protein product of the NUTM1 gene (located on the long arm of chromosome 15) with highly restricted physiologic expression in post-meiotic spermatids, is the oncogenic driver of a group of emerging neoplasms when fused with genes involved in transcription regulation. Although initially identified in a group of lethal midline carcinomas in which NUT forms fusion proteins with bromodomain proteins, NUTM1-rearrangement has since been identified in tumors at non-midline locations, with non-bromodomain partners and with varied morphology. The histologic features of these tumors have also expanded to include sarcoma, skin adnexal tumors, and hematologic malignancies that harbor various fusion partners and are associated with markedly different clinical courses varying from benign to malignant. Most of these tumors have nondescript primitive morphology and therefore should be routinely considered in any undifferentiated neoplasm. The diagnosis is facilitated by the immunohistochemical use of the monoclonal C52 antibody, fluorescence in situ hybridization (FISH), and, recently, RNA-sequencing. The pathogenesis is believed to be altered expression of oncogenes or tumor suppressor genes by NUT-mediated genome-wide histone modification. NUTM1-rearranged neoplasms respond poorly to classical chemotherapy and radiation therapy. Targeted therapies such as bromodomain and extraterminal domain inhibitor (BETi) therapy are being developed. This current review provides an update on NUTM1-rearranged neoplasms, focusing on the correlation between basic sciences and clinical aspects.


2021 ◽  
Author(s):  
Haobin Chen ◽  
Lisa Gesumaria ◽  
Young-Kwon Park ◽  
Trudy G Oliver ◽  
Dinah S. Singer ◽  
...  

SCLC is a recalcitrant malignancy with a dismal prognosis. Four molecular subtypes of SCLC have been named, each associated with one master transcription factor (ASCL1, NEUROD1, POU2F3, or YAP1). Much is still unknown about the function and transactivation of NEUROD1 in this malignancy. Herein we report that knockout of NEUROD1 triggered SCLC to evolve into a YAP1 subtype. Through an integrated analysis of RNA-seq and ChIP-seq, we found NEUROD1 regulates neural-related genes by binding to gene promoters and distal enhancers. NEUROD1 physically interacts with BET bromodomain proteins and recruits them to actively transcribed genes. Inhibition of BET bromodomain proteins blocks NEUROD1 transactivation and suppresses SCLC growth. We identified LSAMP as one of the NEUROD1-target genes that mediate SCLC sensitivity to BET bromodomain inhibitors. Our findings suggest that targeting transcriptional coactivators could be a new approach to block master transcription factors in SCLC to enable precision therapy.


2021 ◽  
Vol 118 (40) ◽  
pp. e2104664118
Author(s):  
Carley Snoznik ◽  
Valentina Medvedeva ◽  
Jelena Mojsilovic-Petrovic ◽  
Paige Rudich ◽  
James Oosten ◽  
...  

A hexanucleotide repeat expansion in the C9orf72 gene is the most common cause of inherited amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Unconventional translation of the C9orf72 repeat produces dipeptide repeat proteins (DPRs). Previously, we showed that the DPRs PR50 and GR50 are highly toxic when expressed in Caenorhabditis elegans, and this toxicity depends on nuclear localization of the DPR. In an unbiased genome-wide RNA interference (RNAi) screen for suppressors of PR50 toxicity, we identified 12 genes that consistently suppressed either the developmental arrest and/or paralysis phenotype evoked by PR50 expression. All of these genes have vertebrate homologs, and 7 of 12 contain predicted nuclear localization signals. One of these genes was spop-1, the C. elegans homolog of SPOP, a nuclear localized E3 ubiquitin ligase adaptor only found in metazoans. SPOP is also required for GR50 toxicity and functions in a genetic pathway that includes cul-3, which is the canonical E3 ligase partner for SPOP. Genetic or pharmacological inhibition of SPOP in mammalian primary spinal cord motor neurons suppressed DPR toxicity without affecting DPR expression levels. Finally, we find that knockdown of bromodomain proteins in both C. elegans and mammalian neurons, which are known SPOP ubiquitination targets, suppresses the protective effect of SPOP inhibition. Together, these data suggest a model in which SPOP promotes the DPR-dependent ubiquitination and degradation of BRD proteins. We speculate the pharmacological manipulation of this pathway, which is currently underway for multiple cancer subtypes, could also represent an entry point for therapeutic intervention to treat C9orf72 FTD/ALS.


Author(s):  
Wenyi Luo ◽  
Todd Stevens ◽  
Phillip Stafford ◽  
Markku Miettinen ◽  
Zoran Gatalica ◽  
...  

Nuclear protein of testis (NUT), a protein product of the NUTM1 gene (located on the long arm of chromosome 15) with highly restricted physiologic expression in post-meiotic spermatids, is the oncogenic driver of a group of emerging neoplasms when fused with genes involved in transcription regulation. Although initially identified in a group of lethal midline carcinomas in which NUT forms fusion proteins with bromodomain proteins, NUTM1-rearrangement has since been identified in tumors at non-midline locations, with non-bromodomain partners and with varied morphology. The histologic features of these tumors have also expanded to include sarcoma, skin adnexal tumors, and hematologic malignancies that harbor various fusion partners and are associated with markedly different clinical courses varying from benign to malignant. Most of these tumors have nondescript primitive morphology and therefore should be routinely considered in any undifferentiated neoplasm. The diagnosis is facilitated by the immunohistochemical use of the monoclonal C52 antibody, fluorescence in situ hybridization (FISH), and, recently, RNA-Sequencing. The pathogenesis is believed to be altered expression of oncogenes or tumor suppressor genes by NUT-mediated genome-wide histone modification. NUTM1-rearranged neoplasms respond poorly to classical chemotherapy and radiation therapy. Targeted therapies such as bromodomain and extraterminal domain inhibitor (BETi) therapy are being developed. This current review provides an update of NUTM1-rearranged neoplasms, focusing on the correlation between basic sciences and clinical aspects.


Author(s):  
Seo Yun Lee ◽  
Jae Jin Kim ◽  
Kyle M. Miller

AbstractEndogenous DNA damage is a major contributor to mutations, which are drivers of cancer development. Bromodomain (BRD) proteins are well-established participants in chromatin-based DNA damage response (DDR) pathways, which maintain genome integrity from cell-intrinsic and extrinsic DNA-damaging sources. BRD proteins are most well-studied as regulators of transcription, but emerging evidence has revealed their importance in other DNA-templated processes, including DNA repair and replication. How BRD proteins mechanistically protect cells from endogenous DNA damage through their participation in these pathways remains an active area of investigation. Here, we review several recent studies establishing BRD proteins as key influencers of endogenous DNA damage, including DNA–RNA hybrid (R-loops) formation during transcription and participation in replication stress responses. As endogenous DNA damage is known to contribute to several human diseases, including neurodegeneration, immunodeficiencies, cancer, and aging, the ability of BRD proteins to suppress DNA damage and mutations is likely to provide new insights into the involvement of BRD proteins in these diseases. Although many studies have focused on BRD proteins in transcription, evidence indicates that BRD proteins have emergent functions in DNA repair and genome stability and are participants in the etiology and treatment of diseases involving endogenous DNA damage.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3606
Author(s):  
Samuel P. Boyson ◽  
Cong Gao ◽  
Kathleen Quinn ◽  
Joseph Boyd ◽  
Hana Paculova ◽  
...  

Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mehwish Khaliq ◽  
Mohan Manikkam ◽  
Elisabeth D. Martinez ◽  
Mohammad Fallahi-Sichani

AbstractHyperactivation of the MAPK signaling pathway motivates the clinical use of MAPK inhibitors for BRAF-mutant melanomas. Heterogeneity in differentiation state due to epigenetic plasticity, however, results in cell-to-cell variability in the state of MAPK dependency, diminishing the efficacy of MAPK inhibitors. To identify key regulators of such variability, we screen 276 epigenetic-modifying compounds, individually or combined with MAPK inhibitors, across genetically diverse and isogenic populations of melanoma cells. Following single-cell analysis and multivariate modeling, we identify three classes of epigenetic inhibitors that target distinct epigenetic states associated with either one of the lysine-specific histone demethylases Kdm1a or Kdm4b, or BET bromodomain proteins. While melanocytes remain insensitive, the anti-tumor efficacy of each inhibitor is predicted based on melanoma cells’ differentiation state and MAPK activity. Our systems pharmacology approach highlights a path toward identifying actionable epigenetic factors that extend the BRAF oncogene addiction paradigm on the basis of tumor cell differentiation state.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Li ◽  
Phillip M. Galbo ◽  
Weida Gong ◽  
Aaron J. Storey ◽  
Yi-Hsuan Tsai ◽  
...  

AbstractRecurring chromosomal translocation t(10;17)(p15;q21) present in a subset of human acute myeloid leukemia (AML) patients creates an aberrant fusion gene termed ZMYND11-MBTD1 (ZM); however, its function remains undetermined. Here, we show that ZM confers primary murine hematopoietic stem/progenitor cells indefinite self-renewal capability ex vivo and causes AML in vivo. Genomics profilings reveal that ZM directly binds to and maintains high expression of pro-leukemic genes including Hoxa, Meis1, Myb, Myc and Sox4. Mechanistically, ZM recruits the NuA4/Tip60 histone acetyltransferase complex to cis-regulatory elements, sustaining an active chromatin state enriched in histone acetylation and devoid of repressive histone marks. Systematic mutagenesis of ZM demonstrates essential requirements of Tip60 interaction and an H3K36me3-binding PWWP (Pro-Trp-Trp-Pro) domain for oncogenesis. Inhibitor of histone acetylation-‘reading’ bromodomain proteins, which act downstream of ZM, is efficacious in treating ZM-induced AML. Collectively, this study demonstrates AML-causing effects of ZM, examines its gene-regulatory roles, and reports an attractive mechanism-guided therapeutic strategy.


2020 ◽  
Vol 215 ◽  
pp. 107631 ◽  
Author(s):  
Filippo Spriano ◽  
Anastasios Stathis ◽  
Francesco Bertoni
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document