crotalus durissus
Recently Published Documents


TOTAL DOCUMENTS

676
(FIVE YEARS 112)

H-INDEX

38
(FIVE YEARS 5)

2021 ◽  
Vol 43 ◽  
pp. e57016
Author(s):  
Marcus Vinícius Cardoso Trento ◽  
Mateus Santos Carapiá ◽  
Pedro Henrique Souza César ◽  
Mariana Aparecida Braga ◽  
Andreimar Martins Soares ◽  
...  

The research and development of alternative treatments for snakebites (e.g., medicinal plants) is necessary due to the high costs of the existing ones. The effects of the aqueous extracts from Jacaranda decurrens leaves, roots, and xylopodium were analyzed upon the venom-induced (Bothrops spp. and Crotalus spp.) systemic and local toxicity. The extracts were able to partially inhibit the phospholipase activity of the venoms from Bothrops jararacussu and Crotalus durissus terrificus. The myotoxic, edema-inducing, coagulant, and hemorrhagic activities were also inhibited. The SDS-PAGE showed that the venom proteins were intact after their incubation with the extracts. This suggests that the possible mechanism of inhibition is not related to the degradation of the protein but rather to their binding to specific sites of the enzymes. The extracts significantly prolonged the survival time of animals in the lethality assay performed with Crotalus durissus terrificus venom and its toxin (crotoxin). The anti-ophidic activity of medicinal plants may aid in the management of snakebites in distant locations by reducing the victim’s local effects and time to heal.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luciana de Araújo Pimenta ◽  
Evandro L. Duarte ◽  
Gabriel S. Vignoli Muniz ◽  
Kerly Fernanda Mesquita Pasqualoto ◽  
Marcos Roberto de Mattos Fontes ◽  
...  

AbstractThe important pharmacological actions of Crotoxin (CTX) on macrophages, the main toxin in the venom of Crotalus durissus terrificus, and its important participation in the control of different pathophysiological processes, have been demonstrated. The biological activities performed by macrophages are related to signaling mediated by receptors expressed on the membrane surface of these cells or opening and closing of ion channels, generation of membrane curvature and pore formation. In the present work, the interaction of the CTX complex with the cell membrane of macrophages is studied, both using biological cells and synthetic lipid membranes to monitor structural alterations induced by the protein. Here we show that CTX can penetrate THP-1 cells and induce pores only in anionic lipid model membranes, suggesting that a possible access pathway for CTX to the cell is via lipids with anionic polar heads. Considering that the selectivity of the lipid composition varies in different tissues and organs of the human body, the thermostructural studies presented here are extremely important to open new investigations on the biological activities of CTX in different biological systems.


Toxicon ◽  
2021 ◽  
Author(s):  
Carolina Rego Rodrigues ◽  
Denis A. Molina Molina ◽  
Dayane N. de Souza ◽  
Javier Cardenas ◽  
Fernanda Costal-Oliveira ◽  
...  

Author(s):  
Samanta Aparecida Castro ◽  
Edwin T. Taylor ◽  
Driele Tavares ◽  
Renato Filogonio ◽  
Gerson Jhonatan Rodriges ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 827
Author(s):  
Aline C. Giardini ◽  
Bianca G. Evangelista ◽  
Morena B. Sant’Anna ◽  
Barbara B. Martins ◽  
Carmen L. P. Lancellotti ◽  
...  

Multiple sclerosis (MS) is a demyelinating disease of inflammatory and autoimmune origin, which induces sensory and progressive motor impairments, including pain. Cells of the immune system actively participate in the pathogenesis and progression of MS by inducing neuroinflammation, tissue damage, and demyelination. Crotalphine (CRO), a structural analogue to a peptide firstly identified in Crotalus durissus terrificus snake venom, induces analgesia by endogenous opioid release and type 2 cannabinoid receptor (CB2) activation. Since CB2 activation downregulates neuroinflammation and ameliorates symptoms in mice models of MS, it was presently investigated whether CRO has a beneficial effect in the experimental autoimmune encephalomyelitis (EAE). CRO was administered on the 5th day after immunization, in a single dose, or five doses starting at the peak of disease. CRO partially reverted EAE-induced mechanical hyperalgesia and decreased the severity of the clinical signs. In addition, CRO decreases the inflammatory infiltrate and glial cells activation followed by TNF-α and IL-17 downregulation in the spinal cord. Peripherally, CRO recovers the EAE-induced impairment in myelin thickness in the sciatic nerve. Therefore, CRO interferes with central and peripheral neuroinflammation, opening perspectives to MS control.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 801
Author(s):  
Isadora Oliveira ◽  
Edson Yoshida ◽  
Murilo Dini ◽  
Ana Paschoal ◽  
José Cogo ◽  
...  

Systemic envenomation by Crotalus durissus terrificus (South American rattlesnake) can cause coagulopathy, rabdomyolysis, acute kidney injury, and peripheral neuromuscular blockade, the latter resulting in flaccid paralysis. Previous studies have shown that plant products such as tannic acid and theaflavin can protect against the neuromuscular blockade caused by C. d. terrificus venom in vitro. In this work, we used mouse-isolated phrenic nerve-diaphragm preparations to examine the ability of caffeic acid, chlorogenic acid, and quercetin to protect against C. d. terrificus venom-induced neuromuscular blockade in vitro. In addition, the ability of tannic acid to protect against the systemic effects of severe envenomation was assessed in rats. Preincubation of venom with caffeic acid (0.5 mg/mL), chlorogenic acid (1 mg/mL), or quercetin (0.5 mg/mL) failed to protect against venom (10 μg/mL)-induced neuromuscular blockade. In rats, venom (6 mg kg−1, i.p.) caused death in ~8 h, which was prevented by preincubation of venom with tannic acid or the administration of antivenom 2 h post-venom, whereas tannic acid given 2 h post-venom prolonged survival (~18.5 h) but did not prevent death. Tannic acid (in preincubation protocols or given 2 h post-venom) had a variable effect on blood creatinine and urea and blood/urine protein levels and prevented venom-induced leukocytosis. Tannic acid attenuated the histological lesions associated with renal damage in a manner similar to antivenom. The protective effect of tannic acid appeared to be mediated by interaction with venom proteins, as assessed by SDS-PAGE. These findings suggest that tannic acid could be a potentially useful ancillary treatment for envenomation by C. d. terrificus.


2021 ◽  
Author(s):  
Raphael J. Eberle ◽  
Ian Gering ◽  
Markus Tusche ◽  
Philipp N. Ostermann ◽  
Lisa Mueller ◽  
...  

The C30 Endopeptidase (3C-like protease; 3CLpro) is essential for the life cycle of SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) since it plays a pivotal role in viral replication and transcription and is hence a promising drug target. Molecules isolated from animals, insects, plants or microorganisms can serve as a scaffold for the design of novel biopharmaceutical products. Crotamine, a small cationic peptide from the venom of the rattlesnake Crotalus durissus terrificus has been the focus of many studies since it exhibits activities such as analgesic, in vitro antibacterial and hemolytic activities. The crotamine derivative L-peptides (L-CDP) that inhibit the 3CL protease in the low μM range were examined since they are susceptible to proteolytic degradation; we explored the utility of their D-enantiomers form. Comparative uptake inhibition analysis showed D-CDP as a promising prototype for a D-peptide-based drug. We also found that the D-peptides can impair SARS-CoV-2 replication in vivo, probably targeting the viral protease 3CLpro.


Toxins ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 707
Author(s):  
Jong Yeon Park ◽  
Bich Hang Do ◽  
Ju-Seung Lee ◽  
Hyun Cheol Yang ◽  
Anh Ngoc Nguyen ◽  
...  

Crotamine, a toxin found in the venom of the South American rattlesnake Crotalus durissus terrificus, has been reported to have antinociceptive effects. We purified recombinant crotamine expressed in Escherichia coli and investigated its antinociceptive and anti-inflammatory effects using the hot-plate test, acetic-acid-induced writhing method, and formalin test in mice. Recombinant crotamine was administered intraperitoneally (0.04–1.2 mg kg−1) or intraplantarly (0.9–7.5 μg 10 μL−1) before the tests. The paw volume was measured with a plethysmometer. To evaluate the antagonistic and anti-inflammatory effects of naloxone, subcutaneous naloxone (4 mg kg−1) or intraplantar naloxone (5 μg 10 μL−1) was administered before recombinant crotamine. For tumor necrosis factor (TNF)-α assays, blood was drawn 3 h after formalin injection and measured using enzyme-linked immunosorbent assay. Intraperitoneal and intraplantar recombinant crotamine had antinociceptive and anti-inflammatory effects, neither of which were affected by pre-treatment with naloxone. The mean serum TNF-α levels were significantly lower in the intraperitoneal recombinant crotamine (0.4 and 1.2 mg kg−1) or intraplantar (2.5 and 7.5 μg 10 μL−1) recombinant crotamine groups than in the saline group and were not affected by naloxone pre-treatment. In conclusion, recombinant crotamine possesses significant antinociceptive and anti-inflammatory effects that do not appear to be related to the opioid receptor. The antinociceptive and anti-inflammatory effects of intraperitoneal or intraplantar recombinant crotamine are related to TNF-α.


Sign in / Sign up

Export Citation Format

Share Document