export production
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 24)

H-INDEX

44
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Christopher Lowery ◽  
Timothy Bralower

The global heterogeneity in export productivity after the Cretaceous-Paleogene (K-Pg) mass extinction is well documented, with some sites showing no change on geologic timescales, some demonstrating sustained decline, and a few showing a somewhat surprising increase. However, these records come from sites so widespread that a key outstanding question is the geographic scale of changes in export productivity, and whether similar environments (open ocean gyres, western boundary currents) responded similarly or whether heterogeneity is unrelated to environment. To address this, we developed three new Ba/Ti export productivity records from sites in the Gulf of Mexico and Caribbean which, combined with published data from a fourth site in the Chicxulub Crater itself, allows us to reconstruct regional changes in post K-Pg export productivity for the first time. We find that, on a regional scale, export productivity change is homogenous, with all four sites showing a ~300 kyr period of elevated export production just after the boundary, followed by a longer period of decline. Interestingly, this interval of elevated export production appears to coincide with the post K-Pg global micrite layer, which is thought to at least partially have been produced by blooms of carbonate-producing cyanobacteria and other picophytoplankton. We note from a global comparison of sites that elevated export productivity appears to be most common in tropical waters, which suggests that changing plankton ecology evidenced by the micrite layer altered the biological pump in a way that encouraged a temporary increase in export production in the tropics.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3085
Author(s):  
Edward Laws ◽  
Kanchan Maiti

Knowledge of the relationship between net primary production (NPP) and export production (EP) in the ocean is required to estimate how the ocean’s biological pump is likely to respond to climate change effects. Here, we show with a theoretical food web model that the relationship between NPP and EP is obscured by the following phenomena: (1) food web dynamics, which cause EP to be a weighted average of new production (NP) over a previous temperature-dependent time interval that can vary between several weeks at 25 °C to several months at 0 °C and, hence, to be much less temporally variable than NP and (2) the temperature dependence of the resiliency of the food web to perturbations, which causes the return to equilibrium to vary from roughly 50 days at 0 °C to 5–10 days at 25 °C. The implication is that the relationship between NPP and EP can be discerned at tropical and subtropical latitudes if measurements of NPP and EP are averages or climatologies over a timeframe of roughly one month. At high latitudes, however, measurements may need to be averaged over a timeframe of roughly one year because the food webs at high latitudes are very likely far from equilibrium with respect to NPP and EP much of the time, and the model can describe only the average behavior of such physically dynamic systems.


2021 ◽  
Author(s):  
María H. Toyos ◽  
Gisela Winckler ◽  
Helge W. Arz ◽  
Lester Lembke-Jene ◽  
Carina B. Lange ◽  
...  

Abstract. Changes in Southern Ocean export production have broad biogeochemical and climatic implications. Specifically, iron fertilization likely increased subantarctic nutrient utilization and enhanced the efficiency of the biological pump during glacials. However, past export production in the subantarctic Southeast Pacific is poorly documented, and its connection to Fe fertilization, potentially related to Patagonian Ice Sheet dynamics is unknown. We report on biological productivity changes over the past 400 ka, based on a combination of 230Thxs-normalized and stratigraphy-based mass accumulation rates of biogenic barium, organic carbon, biogenic opal, and calcium carbonate as indicators of paleo-export production in a sediment core upstream of the Drake Passage. In addition, we use fluxes of iron and lithogenic material as proxies for terrigenous matter, and thus potential micronutrient supply. Stratigraphy-based mass accumulation rates are strongly influenced by bottom-current dynamics, which result in variable sediment focussing or winnowing at our site. Carbonate is virtually absent in the core, except during peak interglacial intervals of the Holocene, and Marine Isotope Stages (MIS) 5 and 11, likely caused by transient decreases in carbonate dissolution. All other proxies suggest that export production increased during most glacial periods, coinciding with high iron fluxes. Such augmented glacial iron fluxes at the core site were most likely derived from glaciogenic input from the Patagonian Ice Sheet promoting the growth of phytoplankton. Additionally, glacial export production peaks are also consistent with northward shifts of the Subantarctic and Polar Fronts, which positioned our site south of the Subantarctic Front and closer to silicic acid-rich waters of the Polar Frontal Zone, as well as a with a decrease in the diatom utilization of Si relative to nitrate under Fe-replete conditions. However, glacial export production near the Drake Passage was lower than in the Atlantic and Indian sectors of the Southern Ocean, which may relate to complete consumption of silicic acid in the study area. Our results underline the importance of micro-nutrient fertilization through lateral terrigenous input from South America rather than aeolian transport, and exemplify the role of frontal shifts and nutrient limitation for past productivity changes in the Pacific entrance to the Drake Passage.


2021 ◽  
Vol 8 ◽  
Author(s):  
Griselda Anglada-Ortiz ◽  
Katarzyna Zamelczyk ◽  
Julie Meilland ◽  
Patrizia Ziveri ◽  
Melissa Chierici ◽  
...  

Planktic foraminifera and shelled pteropods are some of the major producers of calcium carbonate (CaCO3) in the ocean. Their calcitic (foraminifera) and aragonitic (pteropods) shells are particularly sensitive to changes in the carbonate chemistry and play an important role for the inorganic and organic carbon pump of the ocean. Here, we have studied the abundance distribution of planktic foraminifera and pteropods (individuals m–3) and their contribution to the inorganic and organic carbon standing stocks (μg m–3) and export production (mg m–2 day–1) along a longitudinal transect north of Svalbard at 81° N, 22–32° E, in the Arctic Ocean. This transect, sampled in September 2018 consists of seven stations covering different oceanographic regimes, from the shelf to the slope and into the deep Nansen Basin. The sea surface temperature ranged between 1 and 5°C in the upper 300 m. Conditions were supersaturated with respect to CaCO3 (Ω > 1 for both calcite and aragonite). The abundance of planktic foraminifera ranged from 2.3 to 52.6 ind m–3 and pteropods from 0.1 to 21.3 ind m–3. The planktic foraminiferal population was composed mainly of the polar species Neogloboquadrina pachyderma (55.9%) and the subpolar species Turborotalita quinqueloba (21.7%), Neogloboquadrina incompta (13.5%) and Globigerina bulloides (5.2%). The pteropod population was dominated by the polar species Limacina helicina (99.6%). The rather high abundance of subpolar foraminiferal species is likely connected to the West Spitsbergen Current bringing warm Atlantic water to the study area. Pteropods dominated at the surface and subsurface. Below 100 m water depth, foraminifera predominated. Pteropods contribute 66–96% to the inorganic carbon standing stocks compared to 4–34% by the planktic foraminifera. The inorganic export production of planktic foraminifera and pteropods together exceeds their organic contribution by a factor of 3. The overall predominance of pteropods over foraminifera in this high Arctic region during the sampling period suggest that inorganic standing stocks and export production of biogenic carbonate would be reduced under the effects of ocean acidification.


2020 ◽  
Vol 4 (8) ◽  
pp. 1461-1479 ◽  
Author(s):  
Adi Torfstein ◽  
Stephanie S. Kienast ◽  
Barak Yarden ◽  
Asaph Rivlin ◽  
Shuki Isaacs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document