aerosol aging
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 20)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Sheng-Hsiang Wang ◽  
Hsiang-Yu Huang ◽  
Che-Hsuan Lin ◽  
Shantanu Kumar Pani ◽  
Neng-Huei Lin ◽  
...  

AbstractAerosol chemical components such as black carbon (BC) and brown carbon (BrC) regulate aerosol optical properties, which in turn drive the atmospheric radiative forcing estimations due to aerosols. In this study, we used the long-term measurements from AERONET (Aerosol Robotic Network) to better understand the aerosol types and composition with respect to their seasonal and spatial variabilities in peninsular Southeast Asia (PSEA, here defined as Vietnam, Cambodia, Thailand, Laos, and Myanmar). Two methods (i.e., aerosol type cluster and aerosol component retrieval) were applied to determine the aerosol type and chemical composition during the biomass-burning (BB) season. AERONET sites in northern PSEA showed a higher AOD (aerosol optical depth) compared to that of southern PSEA. Differences in land use pattern, geographic location, and weather regime caused much of the aerosol variability over PSEA. Lower single-scattering albedo (SSA) and higher fine-mode fraction (FMF) values were observed in February and March, suggesting the predominance of BB type aerosols with finer and stronger absorbing particles during the dry season. However, we also found that the peak BB month (i.e., March) in northern PSEA may not coincide with the lowest SSA once dust particles have mixed with the other aerosols. Furthermore, we investigated two severe BB events in March of 2014 and 2015, revealing a significant BrC fraction during BB event days. On high AOD days, although the BC fraction was high, the BrC fraction remained low due to lack of aerosol aging. This study highlights the dominance of carbonaceous aerosols in the PSEA atmosphere during the BB season, while also revealing that transported dust particles and BrC aerosol aging may introduce uncertainties into the aerosol radiative forcing calculation.


2021 ◽  
Vol 21 (15) ◽  
pp. 11843-11856
Author(s):  
Benjamin Sumlin ◽  
Edward Fortner ◽  
Andrew Lambe ◽  
Nishit J. Shetty ◽  
Conner Daube ◽  
...  

Abstract. Organic aerosol (OA) emissions from biomass burning have been the subject of intense research in recent years, involving a combination of field campaigns and laboratory studies. These efforts have aimed at improving our limited understanding of the diverse processes and pathways involved in the atmospheric processing and evolution of OA properties, culminating in their accurate parameterizations in climate and chemical transport models. To bring closure between laboratory and field studies, wildfire plumes in the western United States were sampled and characterized for their chemical and optical properties during the ground-based segment of the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) field campaign. Using a custom-developed multiwavelength integrated photoacoustic-nephelometer spectrometer in conjunction with a suite of instruments, including an oxidation flow reactor equipped to generate hydroxyl (OH⚫) or nitrate (NO3⚫) radicals to mimic daytime or nighttime oxidative aging processes, we investigated the effects of multiple equivalent hours of OH⚫ or NO3⚫ exposure on the chemical composition and mass absorption cross-sections (MAC(λ)) at 488 and 561 nm of OA emitted from wildfires in Arizona and Oregon. We found that OH⚫ exposure induced a slight initial increase in absorption corresponding to short timescales; however, at longer timescales, the wavelength-dependent MAC(λ) decreased by a factor of 0.72 ± 0.08, consistent with previous laboratory studies and reports of photobleaching. On the other hand, NO3⚫ exposure increased MAC(λ) by a factor of up to 1.69 ± 0.38. We also noted some sensitivity of aerosol aging to different fire conditions between Arizona and Oregon. The MAC(λ) enhancement following NO3⚫ exposure was found to correlate with an enhancement in CHO1N and CHOgt1N ion families measured by an Aerodyne aerosol mass spectrometer.


2021 ◽  
Vol 21 (15) ◽  
pp. 11581-11591
Author(s):  
Zhen Mu ◽  
Qingcai Chen ◽  
Lixin Zhang ◽  
Dongjie Guan ◽  
Hao Li

Abstract. Atmospheric chromophoric organic matter (COM) plays a fundamental role in photochemistry and aerosol aging. However, the effects of photodegradation on chemical components and photochemical reactivity of COM remain unresolved. Here, we report the potential effects of photodegradation on carbon contents, optical properties, fluorophore components and photochemical reactivity in aerosol. After 7 d of photodegradation, fluorescent intensity and the absorption coefficient of COM decrease by 71.4 % and 32.0 %, respectively. Photodegradation makes a difference to the chemical component of chromophore and the degree of aerosol aging. Low-oxidation humic-like substance (HULIS) is converted into high-oxidation HULIS due to photooxidation. Photodegradation also changes the photochemical reactivity. The generation of triplet-state COM (3COM*) decreases slightly in ambient particulate matter (ambient PM) but increases in primary organic aerosol (POA) following photodegradation. The results highlight that the opposite effect of photodegradation on photochemical reactivity in POA and ambient PM. However, the generation of singlet-oxygen (1O2) decreases obviously in POA and ambient PM, which could be attributed to photodegradation of precursors of 1O2. The combination of optical property, chemical component and reactive oxygen species has an important impact on the air quality. The new insights on COM photodegradation in aerosol reinforce the importance of studying dissolved organic matter (DOM) related with the photochemistry and aerosol aging.


2021 ◽  
Vol 21 (1) ◽  
pp. 357-392
Author(s):  
Igor B. Konovalov ◽  
Nikolai A. Golovushkin ◽  
Matthias Beekmann ◽  
Meinrat O. Andreae

Abstract. Long-range transport of biomass burning (BB) aerosol from regions affected by wildfires is known to have a significant impact on the radiative balance and air quality in receptor regions. However, the changes that occur in the optical properties of BB aerosol during long-range transport events are insufficiently understood, limiting the adequacy of representations of the aerosol processes in chemistry transport and climate models. Here we introduce a framework to infer and interpret changes in the optical properties of BB aerosol from satellite observations of multiple BB plumes. Our framework includes (1) a procedure for analysis of available satellite retrievals of the absorption and extinction aerosol optical depths (AAOD and AOD) and single-scattering albedo (SSA) as a function of the BB aerosol photochemical age and (2) a representation of the AAOD and AOD evolution with a chemistry transport model (CTM) involving a simplified volatility basis set (VBS) scheme with a few adjustable parameters. We apply this framework to analyze a large-scale outflow of BB smoke plumes from Siberia toward Europe that occurred in July 2016. We use AAOD and SSA data derived from OMI (Ozone Monitoring Instrument) satellite measurements in the near-UV range along with 550 nm AOD and carbon monoxide (CO) columns retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) and IASI (Infrared Atmospheric Sounding Interferometer) satellite observations, respectively, to infer changes in the optical properties of Siberian BB aerosol due to its atmospheric aging and to get insights into the processes underlying these changes. Using the satellite data in combination with simulated data from the CHIMERE CTM, we evaluate the enhancement ratios (EnRs) that allow isolating AAOD and AOD changes due to oxidation and gas–particle partitioning processes from those due to other processes, including transport, deposition, and wet scavenging. The behavior of EnRs for AAOD and AOD is then characterized using nonlinear trend analysis. It is found that the EnR for AOD strongly increases (by about a factor of 2) during the first 20–30 h of the analyzed evolution period, whereas the EnR for AAOD does not exhibit a statistically significant increase during this period. The increase in AOD is accompanied by a statistically significant enhancement of SSA. Further BB aerosol aging (up to several days) is associated with a strong decrease in EnRs for both AAOD and AOD. Our VBS simulations constrained by the observations are found to be more consistent with satellite observations of strongly aged BB plumes than “tracer” simulations in which atmospheric transformations of BB organic aerosol were disregarded. The simulation results indicate that the upward trends in EnR for AOD and in SSA are mainly due to atmospheric processing of secondary organic aerosol (SOA), leading to an increase in the mass scattering efficiency of BB aerosol. Evaporation and chemical fragmentation of the SOA species, part of which is assumed to be absorptive (to contain brown carbon), are identified as likely reasons for the subsequent decrease in the EnR for both AAOD and AOD. Hence, our analysis reveals that the long-range transport of smoke plumes from Siberian fires is associated with major changes in BB aerosol optical properties and chemical composition. Overall, this study demonstrates the feasibility of using available satellite observations for evaluating and improving representations in atmospheric models of the BB aerosol aging processes in different regions of the world at much larger temporal scales than those typically addressed in aerosol chamber experiments.


2021 ◽  
Vol 21 (1) ◽  
pp. 315-338
Author(s):  
Jing Dou ◽  
Peter A. Alpert ◽  
Pablo Corral Arroyo ◽  
Beiping Luo ◽  
Frederic Schneider ◽  
...  

Abstract. Iron(III) carboxylate photochemistry plays an important role in aerosol aging, especially in the lower troposphere. These complexes can absorb light over a broad wavelength range, inducing the reduction of iron(III) and the oxidation of carboxylate ligands. In the presence of O2, the ensuing radical chemistry leads to further decarboxylation, and the production of .OH, HO2., peroxides, and oxygenated volatile organic compounds, contributing to particle mass loss. The .OH, HO2., and peroxides in turn reoxidize iron(II) back to iron(III), closing a photocatalytic cycle. This cycle is repeated, resulting in continual mass loss due to the release of CO2 and other volatile compounds. In a cold and/or dry atmosphere, organic aerosol particles tend to attain highly viscous states. While the impact of reduced mobility of aerosol constituents on dark chemical reactions has received substantial attention, studies on the effect of high viscosity on photochemical processes are scarce. Here, we choose iron(III) citrate (FeIII(Cit)) as a model light-absorbing iron carboxylate complex that induces citric acid (CA) degradation to investigate how transport limitations influence photochemical processes. Three complementary experimental approaches were used to investigate kinetic transport limitations. The mass loss of single, levitated particles was measured with an electrodynamic balance, the oxidation state of deposited particles was measured with X-ray spectromicroscopy, and HO2. radical production and release into the gas phase was observed in coated-wall flow-tube experiments. We observed significant photochemical degradation with up to 80 % mass loss within 24 h of light exposure. Interestingly, we also observed that mass loss always accelerated during irradiation, resulting in an increase of the mass loss rate by about a factor of 10. When we increased relative humidity (RH), the observed particle mass loss rate also increased. This is consistent with strong kinetic transport limitations for highly viscous particles. To quantitatively compare these experiments and determine important physical and chemical parameters, a numerical multilayered photochemical reaction and diffusion (PRAD) model was developed that treats chemical reactions and the transport of various species. The PRAD model was tuned to simultaneously reproduce all experimental results as closely as possible and captured the essential chemistry and transport during irradiation. In particular, the photolysis rate of FeIII, the reoxidation rate of FeII, HO2. production, and the diffusivity of O2 in aqueous FeIII(Cit) ∕ CA system as function of RH and FeIII(Cit) ∕ CA molar ratio could be constrained. This led to satisfactory agreement within model uncertainty for most but not all experiments performed. Photochemical degradation under atmospheric conditions predicted by the PRAD model shows that release of CO2 and repartitioning of organic compounds to the gas phase may be very important when attempting to accurately predict organic aerosol aging processes.


2020 ◽  
Author(s):  
Zhen Mu ◽  
Qingcai Chen ◽  
Lixin Zhang ◽  
Dongjie Guan ◽  
Hao Li

Abstract. Atmospheric chromophoric organic matters (COM) can participate in photochemical reactions because of the photosensitiveness, thus COM have a potential contribution to aerosols aging. The photochemical mechanism of atmospheric COM and the effect of photo-degradation on its photochemical reactivity are not fully understood. To address this knowledge gap, the characteristics of COM photo-degradation and the potential effects of COM photolysis on the photochemical reactivity are illustrated. COM are identified by excitation-emission matrices combined with parallel factor analysis. We confirm that both water-soluble and water-insoluble COM are photo-bleached, and an average 70 % of fluorescence intensities are lost after 7 days of light exposure. Furtherly, it is found that there is a transformation process of low oxidation to high oxidation HULIS. We propose that the high oxidation HULIS could be used to trace the aging degree of aerosols. In terms of photochemical reactivity, compared with before photolysis, the triplet state COM (3COM*) decrease slightly in ambient particle matter (ambient PM) samples and increase in primary organic aerosol (POA). However, the COM induce fewer singlet oxygen after photolysis. The photolysis and conversion of COM are the major cause of the change of photochemical activity. The result also enunciate that the photochemical reaction mechanisms and aerosol aging processes are relatively different in various aerosols. In conclusion, we demonstrated that the photo-degradation of COM not only change the chemical compositions, but also change the roles of the COM in the aerosol aging process.


2020 ◽  
Vol 20 (16) ◽  
pp. 9665-9677 ◽  
Author(s):  
Yang Gao ◽  
Deqiang Zhang ◽  
Juntao Wang ◽  
Huiwang Gao ◽  
Xiaohong Yao

Abstract. In this study, a cruise campaign was conducted over marginal seas in China to measure the concentrations of condensation nuclei (Ncn), cloud condensation nuclei (Nccn) and other pollutants from day of year (DOY) 110 to DOY 135 of 2018. The ship self-emission signals were exhaustively excluded, and the mean values of Nccn during the cruise campaign were found to slightly increase from 3.2±1.1×103 cm−3 (mean ± standard deviation) at supersaturation (SS) of 0.2 % to 3.9±1.4×103 cm−3 at SS of 1.0 %, and the mean value for Ncn was 8.1±4.4×103 cm−3. Data analysis showed that marine traffic emissions apparently largely contributed to the increase in Ncn in the daytime, especially in the marine atmospheres over heavily traveled sea zones; however, the fresh sources made no clear contribution to the increase in Nccn. This finding was supported by the quantitative relations between Ncn and Nccn at SS = 0.2 %–1.0 % against the mixing ratios of SO2 in the ship self-emission plumes – i.e., a 1 ppb increase in SO2 corresponded to a 1.4×104 cm−3 increase in Ncn but only a 30–170 cm−3 increase in Nccn, possibly because of abundant organics in the aerosols. Smooth growth can be observed in the marine-traffic-derived particles, reflecting aerosol aging. The estimated hygroscopicity parameter (κ) values were generally as high as 0.46–0.55 under the dominant onshore winds, suggesting that inorganic ammonium aerosols likely acted as the major contributor to Nccn largely through aerosol aging processes of decomposing organics. Moreover, the influences of the new transported particles from the continent on the Ncn and Nccn in the marine atmosphere were investigated.


Sign in / Sign up

Export Citation Format

Share Document