internal fit
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 103)

H-INDEX

27
(FIVE YEARS 6)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 424
Author(s):  
Nourhan Samy ◽  
Walid Al-Zordk ◽  
Ahmed Elsherbini ◽  
Mutlu Özcan ◽  
Amal Abdelsamad Sakrana

This paper assesses the effect of cement type and cement preheating on the marginal and internal fit of lithium disilicate single crown. Methods: 40 maxillary premolars were selected, restored with lithium disilicate single crowns. Teeth were randomly assigned into four groups (n = 10) based on cement type (Panavia SA or LinkForce) and preheating temperature (25 °C or 54 °C). After fabrication of the restoration, cements were incubated at 25 °C or 54 °C for 24 h, and each crown was cemented to its corresponding tooth. After 24 h, all specimens were thermally aged to (10,000 thermal cycles between 5 °C and 55 °C), then load cycled for 240,000 cycles. Each specimen was then sectioned in bucco-palatal direction and inspected under a stereomicroscope at x45 magnification for marginal and internal fit evaluation. The data were statistically analyzed (significance at p ≤ 0.05 level). Results: At the mid-buccal finish line, mid-buccal wall, palatal cusp, mid-palatal wall, mid-palatal finish line, and palatal margin measuring points, there was a significant difference (p ≤ 0.05) between the lithium disilicate group cemented with Panavia SA at 25 °C and the group cemented with LinkForce at 25 °C, while there was no significant difference (p > 0.05) at the other points. At all measuring points, except at the palatal cusp tip (p = 0.948) and palatal margin (p = 0.103), there was a statistically significant difference (p ≤ 0.05) between the lithium disilicate group cemented with Panavia SA at 54 °C and the group cemented with LinkForce at 54 °C. Regardless of cement preheating, statistically significant differences were found in the buccal cusp tip, central groove, palatal cusp tip, and mid-palatal wall (p ≤ 0.05) in the lithium disilicate group cemented with Panavia SA at 25 °C and 54 °C, as well as the mid-palatal chamfer finish line and palatal margin in the LinkForce group cemented with Panavia SA at 25 °C and 54 °C. At the other measurement points, however, there was no significant difference (p > 0.05). Conclusions: The type of resin cement affects the internal and marginal fit of lithium disilicate crowns. At most measuring points, the cement preheating does not improve the internal and marginal fit of all lithium disilicate crowns.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yunhao Gong ◽  
Yun Le ◽  
Xinyue Zhang ◽  
Xiaoyan Chen ◽  
Hui Zeng

The adaptability of organizations to their environment has always been a key concern in both organizational theory and management practice. Different from the single perspective of previous studies, this research adopts an integrated, outside-in perspective. Employing an agent-based simulation model (ASM) and a multiple regression model (MRM), we examine the impact of the intensity of exploitative and exploratory practice on organizational adaptability, as well as the moderating effect of environmental dynamism and organizational absorptive capacity. The results of the research show that (1) the stable environment prefers organizations with a practice strategy of high exploitation and low exploration; (2) environmental dynamism inhibits the impact of both exploitative and exploratory practices on organizational adaptability; and (3) organizational absorptive capacity significantly reinforces the link between the intensity of exploitative practice, as well as exploratory practice, and organizational adaptability. The study investigates the external alignment of organizational exploratory and exploitative practices with environmental dynamism and internal fit with absorptive capacity. The findings provide new insight into the question of how organizations can resist the erosion of environmental dynamism through strategic alignment and capacity development.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7858
Author(s):  
Andrés Sánchez-Monescillo ◽  
Carlos González-Serrano ◽  
José González-Serrano ◽  
João Malta Barbosa ◽  
Carlos López-Suárez ◽  
...  

The objective was to evaluate the effect of luting agents and the preparation design on the internal fit of zirconia restorations. Sixty dies were prepared and divided in occlusal convergence angle of 6° (OC6) and 12° (OC12). CAD/CAM zirconia copings were fabricated (Lava All-Ceramic System). A zinc phosphate cement (ZPC); a glass ionomer cement (GIC); and a resin cement (RC) were studied. Specimens were sectioned and coping/die discrepancies were evaluated through Stereoscopic Microscopy. A closer fit was observed in OC12 when compared to OC6 (p < 0.001). For OC6 no significant differences were observed in between ZPC, GIC, and RC (p > 0.05). For OC12, a significantly closer fit was recorded on the ZPC subgroup when compared to the GIC subgroup (p < 0.001). Preparations of 12 degrees demonstrated a closer internal fit when compared to 6 degrees. Preparations of 12 degrees achieved better internal fit values with ZPC (Fortex) followed by RC (RelyX Unicem), and GIC (Ketac Cem). No differences were found when comparing different luting agents over 6° degrees preparations.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6346
Author(s):  
Haneen A. Sadeqi ◽  
Mirza Rustum Baig ◽  
Mohammad Al-Shammari

Fit accuracy and fracture strength of milled monolithic zirconia (Zi) and zirconia-reinforced lithium silicate (ZLS) crowns are important parameters determining the success of these restorations. This study aimed to evaluate and compare the marginal and internal fit of monolithic Zi and ZLS crowns, along with the fracture load, with and without mechanical aging. Thirty-two stone dies acquired from a customized master metal molar die were scanned, and ceramic crowns (16 Zi Ceramill Zolid HT+ and 16 ZLS Vita Suprinity) were designed and milled. Absolute marginal discrepancies (AMD), marginal gaps (MG), and internal gaps (IG) of the crowns, in relation to the master metal die, were evaluated using x-ray nanotomography (n = 16). Next, thirty-two metal dies were fabricated based on the master metal die, and crowns (16 Zi; 16 ZLS) cemented and divided into four groups of eight each; eight Zi with mechanical aging (MA), eight Zi without mechanical aging (WMA), eight ZLS (MA), and eight ZLS (WMA). Two groups of crowns (Zi-MA; ZLS-MA) were subjected to 500,000 mechanical cycles (200 ± 50 N, 10 Hz) followed by axial compressive strength testing of all crowns, until failure, and the values were recorded. Independent sample t tests (α = 0.05) revealed no significant differences between Zi and ZLS crowns (p > 0.05); for both internal and marginal gaps, however, there were significant differences in AMD (p < 0.005). Independent samples Mann–Whitney U and Kruskal–Wallis tests revealed significant differences between the two materials, Zi and ZLS, regardless of fatigue loading, and for the individual material groups based on aging (α = 0.05). Multiple comparisons using Bonferroni post-hoc analysis showed significant differences between Zi and ZLS material groups, with or without aging. Within the limitations of this study, the ZLS crown fit was found to be on par with Zi, except for the AMD parameter. As regards fracture resistance, both materials survived the normal range of masticatory forces, but the Zi crowns demonstrated greater resistance to fracture. The monolithic Zi and ZLS crowns seem suitable for clinical application, based on the fit and fracture strength values obtained.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257158
Author(s):  
Wei-Ting Chou ◽  
Chuan-Chung Chuang ◽  
Yi-Bing Wang ◽  
Hsien-Chung Chiu

This experimental study aimed to compare the internal fit (marginal fit and internal discrepancy) of metal crowns fabricated by traditional casting and digital methods (computer numerically controlled (CNC) milling and three-dimensional [3D] printing). Thirty standard master abutment models were fabricated using a 3D printing technique with digital software. Metal crowns were fabricated by traditional casting, CNC milling, and 3D printing. The silicon replica method was used to measure the marginal and internal fit. A thin layer of low-viscosity polyvinyl siloxane material was placed inside each crown and on the die (like a seat) until the material was set. Replicas were examined at four reference points under a microscope: the central pit (M1), cusp tip (M2), axial wall (M3), and margin (M4). The measured data were analyzed using a one-way analysis of variance (ANOVA) to verify statistical significance, which was set at p < 0.05. In the traditional casting group, the minimum distance measured was at M3 (90.68 ± 14.4 μm) and the maximum distance measured was at M1 (145.12 ± 22 μm). In the milling group, the minimum distance measured was at M3 (71.85 ± 23.69 μm) and the maximum distance measured was at M1 (108.68 ± 10.52 μm). In the 3D printing group, the minimum distance measured was at M3 (100.59 ± 9.26 μm) and the maximum distance measured was at M1 (122.33 ± 7.66 μm). The mean discrepancy for the traditional casting, CNC milling, and 3D printing groups was 120.20, 92.15, and 111.85 μm, respectively, showing significant differences (P < 0.05). All three methods of metal crown fabrication, that is, traditional casting, CNC milling, and 3D printing, had values within the clinically acceptable range. The marginal and internal fit of the crown was far superior in the CNC milling method.


Author(s):  
Angelo Putignano ◽  
Vincenzo Tosco ◽  
Riccardo Monterubbianesi ◽  
Flavia Vitiello ◽  
Maria Laura Gatto ◽  
...  

2021 ◽  
Author(s):  
Yunus Emre Ozden ◽  
M.Baris Guncu ◽  
Guliz Aktas ◽  
Senay Canay

Abstract Background Short-time sintering may offer advantages including saving time and energy but there is limited evidence on the effect that altering sintering time has on the accuracy of monolithic zirconia crowns. The purpose of this in vitro study was to investigate the effect of shortened sintering time on the marginal and internal fit of 3Y-TZP (three mol% yttria-stabilized tetragonal zirconia polycrystal) and 4Y-TZP (four mol% yttria-stabilized tetragonal zirconia polycrystal) monolithic crowns. Methods Sixty monolithic zirconia crowns were fabricated for the maxillary first molar tooth on the prefabricated implant abutment. Groups were created according to the material composition: 3Y-TZP Generation 1 (alumina wt; ≤0.5%, < 15% cubic phase), 3Y-TZP Generation 2 (alumina wt; ≤0.05%, < 15% cubic phase) and 4Y-TZP (alumina wt; ≤0.05%, > 25% cubic phase). Two different sintering protocols were performed: same final sintering temperature (1500°C) and various rates of heating (10°C/min and 40°C/min), cooling down speed (-10°C/min and − 40°C/min), holding time (45 and 120 minutes), and total sintering time (approximately 2 and 7 hours, respectively). The marginal and internal fit of the crowns were determined using the silicone replica technique. Comparisons between groups and sintering times were analyzed using two-way ANOVA. Pairwise multiple comparisons were performed using the t-test (p < 0.05). Results The mean marginal gap values of 4Y-TZP zirconia revealed statistically significant increase for the speed sintering protocol (p < 0.0001), while no difference was observed between the sintering protocols for the mean marginal gap values of 3Y-TZP groups. Conclusions Although all groups showed clinically acceptable gap values (<120 µm), altering the sintering time had an effect on the marginal fit of the crowns manufactured from 4Y-TZP zirconia. Shortening the sintering time may lead to differences within clinically acceptable limits. The manufacturer's recommendations according to material composition should be implemented with care.


2021 ◽  
Vol 21 ◽  
pp. e225136
Author(s):  
Patrícia Valéria Manozzo Kunz ◽  
Gabriela Andrade Serpa ◽  
Leonardo Fernandes da Cunha ◽  
Gisele Maria Correr ◽  
Carla Castiglia Gonzaga

Aim: To evaluate the influence of cobalt-chromium (Co-Cr) coping fabrication methods and ceramic application on the marginal and internal fit of metal-ceramic crowns. Methods: Co-Cr copings for metal-ceramic crowns were prepared by lost wax casting or CAD-CAM machining of sintered blocks. The fit was analyzed using the silicone replica technique at four assessment points: marginal gap (MG), axial wall (AW), axio-occlusal (AO) angle, and central occlusal (CO) wall. After the initial analysis, the copings were ceramic-veneered with the layering technique, and the fit was again determined. Data were statistically analyzed by paired and unpaired Student’s-t test (α=0.05). Results: Marginal and internal fit before ceramic application according to the coping manufacturing method showed significant differences only at CO (p < 0.001), with milled copings (137.98±16.71 μm) showing higher gap values than cast copings (112.86±8.57 μm). For cast copings, there were significant differences at MG (before 109.13±8.79 μm; after 102.78±7.18 μm) and CO (before 112.86±8.57 μm; after 104.07±10.63 μm) when comparing the fit before and after ceramic firing. For milled copings, there was significant difference only at AO (before 116.39±9.64 μm; after 108.54±9.26 μm). Conclusion: This study demonstrated that the coping fabrication method influenced the internal fit. Ceramic firing maintained or improved the fit of the metal-ceramic crowns. The marginal discrepancy of all restorations, before and after ceramic firing, can be considered clinically acceptable.


Sign in / Sign up

Export Citation Format

Share Document