continuous outcomes
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 37)

H-INDEX

31
(FIVE YEARS 2)

Author(s):  
Osval Antonio Montesinos López ◽  
Abelardo Montesinos López ◽  
Jose Crossa

AbstractThis chapter provides elements for implementing deep neural networks (deep learning) for continuous outcomes. We give details of the hyperparameters to be tuned in deep neural networks and provide a general guide for doing this task with more probability of success. Then we explain the most popular deep learning frameworks that can be used to implement these models as well as the most popular optimizers available in many software programs for deep learning. Several practical examples with plant breeding data for implementing deep neural networks in the Keras library are outlined. These examples take into account many components in the predictor as well many hyperparameters (hidden layer, number of neurons, learning rate, optimizers, penalization, etc.) for which we also illustrate how the tuning process can be done to increase the probability of a successful application.


Author(s):  
Lizandra C. Fabio ◽  
Francisco J. A. Cysneiros ◽  
Gilberto A. Paula ◽  
Jalmar M. F. Carrasco

Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anca Chis Ster ◽  
Rachel Phillips ◽  
Odile Sauzet ◽  
Victoria Cornelius

Abstract Background Randomised controlled trials (RCTs) provide valuable information for developing harm profiles but current analysis practices to detect between-group differences are suboptimal. Drug trials routinely screen continuous clinical and biological data to monitor participant harm. These outcomes are regularly dichotomised into abnormal/normal values for analysis. Despite the simplicity gained for clinical interpretation, it is well established that dichotomising outcomes results in a considerable reduction in information and thus statistical power. We propose an automated procedure for the routine implementation of the distributional method for the dichotomisation of continuous outcomes proposed by Peacock and Sauzet, which retains the precision of the comparison of means. Methods We explored the use of a distributional approach to compare differences in proportions based on the comparison of means which retains the power of the latter. We applied this approach to the screening of clinical and biological data as a means to detect ‘signals’ for potential adverse drug reactions (ADRs). Signals can then be followed-up in further confirmatory studies. Three distributional methods suitable for different types of distributions are described. We propose the use of an automated approach using the observed data to select the most appropriate distribution as an analysis strategy in a RCT setting for multiple continuous outcomes. We illustrate this approach using data from three RCTs assessing the efficacy of mepolizumab in asthma or COPD. Published reference ranges were used to define the proportions of participants with abnormal values for a subset of 10 blood tests. The between-group distributional and empirical differences in proportions were estimated for each blood test and compared. Results Within trials, the distributions varied across the 10 outcomes demonstrating value in a practical approach to selecting the distributional method in the context of multiple adverse event outcomes. Across trials, there were three outcomes where the method chosen by the automated procedure varied for the same outcome. The distributional approach identified three signals (eosinophils, haematocrit, and haemoglobin) compared to only one when using the Fisher’s exact test (eosinophils) and two identified by use of the 95% confidence interval for the difference in proportions (eosinophils and potassium). Conclusion When dichotomisation of continuous adverse event outcomes aids clinical interpretation, we advocate use of a distributional approach to retain statistical power. Methods are now easy to implement. Retaining information is especially valuable in the context of the analysis of adverse events in RCTs. The routine implementation of this automated approach requires further evaluation.


Sign in / Sign up

Export Citation Format

Share Document