nascent polypeptide
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 26)

H-INDEX

48
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Yuhei Chadani ◽  
Nobuyuki Sugata ◽  
Tatsuya Niwa ◽  
Yosuke Ito ◽  
Shintaro Iwasaki ◽  
...  

2021 ◽  
Author(s):  
Junki Uchiyama ◽  
Rohini Roy ◽  
Dan Ohtan Wang ◽  
Chiaki Yoshino ◽  
Yuichiro Mishima ◽  
...  

SummaryCellular global translation is often measured using ribosome profiling or quantitative mass spectrometry, but these methods do not provide direct information at the level of elongating nascent polypeptide chains (NPCs) and associated co-translational events. Here we describe pSNAP, a method for proteome-wide profiling of NPCs by affinity enrichment of puromycin- and stable isotope-labeled polypeptides. pSNAP does not require ribosome purification and/or chemical reaction, and captures bona fide NPCs that characteristically exhibit protein N-terminus-biased positions. We applied pSNAP to evaluate the effect of silmitasertib, a potential molecular therapy for cancer and COVID-19 patients, and revealed acute translational repression through casein kinase II and mTOR pathways. We also characterized modifications on NPCs and demonstrated that the combination of different types of modifications, such as acetylation and phosphorylation in the N-terminal region of histone H1.5, can modulate interactions with ribosome-associated factors. Thus, pSNAP provides a framework for dissecting co-translational regulations on a proteome-wide scale.


2021 ◽  
Author(s):  
Yuhei Chadani ◽  
Nobuyuki Sugata ◽  
Tatsuya Niwa ◽  
Yosuke Ito ◽  
Shintaro Iwasaki ◽  
...  

SummaryContinuous translation elongation, irrespective of amino acid sequences, is a prerequisite for living organisms to produce their proteomes. However, the risk of elongation abortion is concealed within nascent polypeptide products. Negatively charged sequences with occasional intermittent prolines, termed intrinsic ribosome destabilization (IRD) sequences, destabilizes the translating ribosomal complex. Thus, some nascent chain sequences lead to premature translation cessation. Here, we show that the risk of IRD is maximal at the N-terminal regions of proteins encoded by dozens of Escherichia coli genes. In contrast, most potential IRD sequences in the middle of open reading frames remain cryptic. We found two elements in nascent chains that counteract IRD: the nascent polypeptide itself that spans the exit tunnel and its bulky amino acid residues that occupy the tunnel entrance region. Thus, nascent polypeptide products have a built-in ability to ensure elongation continuity by serving as a bridge and thus by protecting the large and small ribosomal subunits from dissociation.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hao-Hsuan Hsieh ◽  
Jae Ho Lee ◽  
Sowmya Chandrasekar ◽  
Shu-ou Shan

AbstractProtein biogenesis is essential in all cells and initiates when a nascent polypeptide emerges from the ribosome exit tunnel, where multiple ribosome-associated protein biogenesis factors (RPBs) direct nascent proteins to distinct fates. How distinct RPBs spatiotemporally coordinate with one another to affect accurate protein biogenesis is an emerging question. Here, we address this question by studying the role of a cotranslational chaperone, nascent polypeptide-associated complex (NAC), in regulating substrate selection by signal recognition particle (SRP), a universally conserved protein targeting machine. We show that mammalian SRP and SRP receptors (SR) are insufficient to generate the biologically required specificity for protein targeting to the endoplasmic reticulum. NAC co-binds with and remodels the conformational landscape of SRP on the ribosome to regulate its interaction kinetics with SR, thereby reducing the nonspecific targeting of signalless ribosomes and pre-emptive targeting of ribosomes with short nascent chains. Mathematical modeling demonstrates that the NAC-induced regulations of SRP activity are essential for the fidelity of cotranslational protein targeting. Our work establishes a molecular model for how NAC acts as a triage factor to prevent protein mislocalization, and demonstrates how the macromolecular crowding of RPBs at the ribosome exit site enhances the fidelity of substrate selection into individual protein biogenesis pathways.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuzuru Itoh ◽  
Andreas Naschberger ◽  
Narges Mortezaei ◽  
Johannes M. Herrmann ◽  
Alexey Amunts

Abstract Mitoribosomes are specialized protein synthesis machineries in mitochondria. However, how mRNA binds to its dedicated channel, and tRNA moves as the mitoribosomal subunit rotate with respect to each other is not understood. We report models of the translating fungal mitoribosome with mRNA, tRNA and nascent polypeptide, as well as an assembly intermediate. Nicotinamide adenine dinucleotide (NAD) is found in the central protuberance of the large subunit, and the ATPase inhibitory factor 1 (IF1) in the small subunit. The models of the active mitoribosome explain how mRNA binds through a dedicated protein platform on the small subunit, tRNA is translocated with the help of the protein mL108, bridging it with L1 stalk on the large subunit, and nascent polypeptide paths through a newly shaped exit tunnel involving a series of structural rearrangements. An assembly intermediate is modeled with the maturation factor Atp25, providing insight into the biogenesis of the mitoribosomal large subunit and translation regulation.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel M. Wilson ◽  
Yu Li ◽  
Amber LaPeruta ◽  
Michael Gamalinda ◽  
Ning Gao ◽  
...  

Abstract The nascent polypeptide exit tunnel (NPET) is a major functional center of 60S ribosomal subunits. However, little is known about how the NPET is constructed during ribosome assembly. We utilized molecular genetics, biochemistry, and cryo-electron microscopy (cryo-EM) to investigate the functions of two NPET-associated proteins, ribosomal protein uL4 and assembly factor Nog1, in NPET assembly. Structures of mutant pre-ribosomes lacking the tunnel domain of uL4 reveal a misassembled NPET, including an aberrantly flexible ribosomal RNA helix 74, resulting in at least three different blocks in 60S assembly. Structures of pre-ribosomes lacking the C-terminal extension of Nog1 demonstrate that this extension scaffolds the tunnel domain of uL4 in the NPET to help maintain stability in the core of pre-60S subunits. Our data reveal that uL4 and Nog1 work together in the maturation of ribosomal RNA helix 74, which is required to ensure proper construction of the NPET and 60S ribosomal subunits.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Benjamin D Hobson ◽  
Linghao Kong ◽  
Erik W Hartwick ◽  
Ruben L Gonzalez ◽  
Peter A Sims

Puromycin is an amino-acyl transfer RNA analog widely employed in studies of protein synthesis. Since puromycin is covalently incorporated into nascent polypeptide chains, anti-puromycin immunofluorescence enables visualization of nascent protein synthesis. A common assumption in studies of local messenger RNA translation is that the anti-puromycin staining of puromycylated nascent polypeptides in fixed cells accurately reports on their original site of translation, particularly when ribosomes are stalled with elongation inhibitors prior to puromycin treatment. However, when we attempted to implement a proximity ligation assay to detect ribosome-puromycin complexes, we found no evidence to support this assumption. We further demonstrated, using biochemical assays and live cell imaging of nascent polypeptides in mammalian cells, that puromycylated nascent polypeptides rapidly dissociate from ribosomes even in the presence of elongation inhibitors. Our results suggest that attempts to define precise subcellular translation sites using anti-puromycin immunostaining may be confounded by release of puromycylated nascent polypeptide chains prior to fixation.


Sign in / Sign up

Export Citation Format

Share Document