length to diameter ratio
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 35)

H-INDEX

17
(FIVE YEARS 2)

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 60
Author(s):  
Lihuan Chen ◽  
Muzheng Cheng ◽  
Yi Cai ◽  
Liwen Guo ◽  
Dianrong Gao

The technology of increasing coal seam permeability by high-pressure water jet has significant advantages in preventing and controlling gas disasters in low-permeability coal seam. The structural parameters of a nozzle are the key to its jet performance. The majority of the current studies take strike velocity as the evaluation index, and the influence of the interaction between the nozzle’s structural parameters on its jet performance is not fully considered. In practice, strike velocity and strike area will affect gas release in the process of coal breaking and punching. To further optimize the structural parameters of coal breaking and punching nozzle, and improve water jet performance, some crucial parameters such as the contraction angle, outlet divergence angle, and length-to-diameter ratio are selected. Meanwhile, the maximum X-axis velocity and effective Y-axis extension distance are used as evaluation indexes. The effect of each key factor on the water jet performance is analyzed by numerical simulation using the single factor method. The significance and importance effect of each factor and their interaction on the water jet performance are quantitatively analyzed using the orthogonal experiment method. Moreover, three optimal combinations are selected for experimental verification. Results show that with an increase in contraction angle, outlet divergence angle, and length-to-diameter ratio, the maximum X-axis velocity increases initially and decreases thereafter. The Y-direction expansion distance of the jet will be improved significantly with an increase in the outlet divergence angle. Through field experiments, the jet performance of the improved nozzle 3 is the best. After optimization, the coal breaking and punching diameter of the nozzle is increased by 118%, and the punching depth is increased by 17.46%.


Author(s):  
Setia Budi Sumandra ◽  
Bhisma Mahendra ◽  
Fahrudin Nugroho ◽  
Yusril Yusuf

Carbon nanotubes (CNTs) have benefits in various fields, they are disadvantageous due to their tendency to form aggregates and poorly controlled alignment of the CNT molecules (characterized by order parameters). These deficiencies can be overcome by dispersing the CNTs in nematic liquid crystal (LC) and placing the mixture under the influence of an electric field. In this study, Doi and Landau–de Gennes free energy density equations are used to analytically confirm that an electric field increases the order parameters of CNTs and LCs in a dispersion mixture. The anchoring strength of the nematic LC is also found to affect the order parameters of the CNTs and LC. Further, increasing the length-to-diameter ratio of the CNTs increases their alignment without affecting the LC alignment. These findings indicate that CNT molecular alignment can be controlled by adjusting the CNT length-to-diameter ratio, anchoring the LCs, and adjusting the electric field strength.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xin Liu ◽  
Yu-Zhou Zheng ◽  
Qin Fang ◽  
Heng-Bo Xiang ◽  
Hai-Chun Yan

To explore the influence of microexpansive concrete self-stress on the performance of steel pipe concrete, the expansion rate test of microexpansive concrete confined by steel tube was carried out with different expansion rates. Then, the mechanical properties of high-strength steel tube-confined microexpansive concrete (HSTCMC) short columns were conducted by the uniaxial compression test. The length-to-diameter ratio, the expansion rate of the microexpansive concrete, and the steel tube thickness were investigated in the study. Furthermore, the ABAQUS software was employed to analyze the microexpansive mechanism of the concrete, and it was verified by the uniaxial compression test. The test results show that the concrete possesses a remarkable volume expansion phenomenon, which was up to 150 με after four days of maintenance time. The mechanical properties of the HSTCMC short columns were greatly improved compared to the control RC pier. The yield and ultimate strength of the HSTCMC short columns can be enhanced to 8.9% and 14.6%, and with the content of expansive agent that increased from 8% to 12%. The finite element analysis results highlighted that the end constraint at the two ends has the biggest influence on the mechanical performance of the HSTCMC short columns, followed by the thickness of the steel tube and the content of the expansive agent. It should be noted that the self-stress of microexpansive concrete will be decreased with the increase in the length-to-diameter ratio, when the length-to-diameter ratio is less than four. Furthermore, the constraint effect of the circular steel tube on the microexpansive concrete is better than that of the rectangular section steel tube.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hans Raj Vashishtha ◽  
Vishwas A. Sawant

AbstractThe granular pile anchor foundation is an effective and economical foundation system to counter the pullout forces exerted in case of transmission towers or foundations in expansive soil. The pullout tests were performed to study the behaviour of a single granular pile anchor in the clayey soil bed. Tests were conducted in a steel tank of 1 ×  1  ×  1 m size with the help of loading frame arrangement. The pullout load required for upward movement equal to 10% diameter was considered as the pullout capacity of the granular pile anchor. In the parametric study, length and diameter of the granular pile anchor were varied to examine their effect. Number of anchor plates was also varied in few tests. The pullout capacity enhanced with an increase in the diameter and length to diameter ratio. The effect of the length to diameter ratio was appreciable up to the value of 10. However, no significant effect was found in the cases of multiple anchor plates. A relationship is proposed to predict normalized pullout capacity.


2021 ◽  
Author(s):  
Ahmed A. Hamada ◽  
Mirjam Furth

Moving water has one of the highest energy densities, yet a major untapped and underutilized area of energy production is wave energy. With the recent interest in the Blue Economy, this is about to change. Point Wave Energy Converter (PWEC) absorbs the wave energy at a single point and is characterized by the buoy surface component and a longer subsurface component that is attached to the seabed. The motion of the top buoy is used to pump fluid or drive a linear generator, which in turn provides power. This paper numerically investigates different shaped surface buoys, with a focus on the power-generating ability of the system, for a single point WEC using a non-linear free surface approximation. Three-dimensional simulations of the buoys in various sea states were modeled in OpenFOAM using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with Finite Volume Method (FVM). The dynamic mesh module was integrated with the two-phase solver, and the mechanical system of the WEC was modeled with a forced oscillator mechanism. By studying the displacements, frequency responses, and design parameters, the optimal buoy shape for maximizing energy output was determined. Further, the guidance regarding the effect of changes in the geometry, represented by the length to diameter ratio of the shape, is discussed. The results showed that the spheroid buoy shape with a low length to diameter ratio is a good candidate shape to extract wave energy since it has a large waterplane area.


Author(s):  
Zhenya Duan ◽  
Wenchen Li ◽  
Longlong Lin ◽  
Rongxian Qu ◽  
Shaopu Li ◽  
...  

Abstract Liquid–gas ejector as a key component of jet loop reactor (JLR), plays an important role in the continuous production of gas–liquid mixing reaction. In this paper, a formula for estimating the gas induction of the ejector is presented. The effects of nozzle radius and mixing length on gas induction of liquid–gas ejector for gas–liquid mixing are simulated, and the formula is verified. Focusing on the efficiency and gas induction, the geometrical parameters are analyzed for the same cases, so that the performance of the ejector can be thoroughly understood. The results show that the optimum mixing section length to diameter ratio (LDR) is about 5–7, and the decrease of nozzle outlet radius can increase the gas induction, which provides a reference for the evaluation of gas induction for liquid–gas ejector and has crucial guiding significance for the design of nozzle and mixing section of liquid–gas ejector in industry.


Sign in / Sign up

Export Citation Format

Share Document