supercritical water reactor
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 13)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 7 (4) ◽  
pp. 311-318
Author(s):  
Artavazd M. Sujyan ◽  
Viktor I. Deev ◽  
Vladimir S. Kharitonov

The paper presents a review of modern studies on the potential types of coolant flow instabilities in the supercritical water reactor core. These instabilities have a negative impact on the operational safety of nuclear power plants. Despite the impressive number of computational works devoted to this topic, there still remain unresolved problems. The main disadvantages of the models are associated with the use of one simulated channel instead of a system of two or more parallel channels, the lack consideration for neutronic feedbacks, and the problem of choosing the design ratios for the heat transfer coefficient and hydraulic resistance coefficient under conditions of supercritical water flow. For this reason, it was decided to conduct an analysis that will make it possible to highlight the indicated problems and, on their basis, to formulate general requirements for a model of a nuclear reactor with a light-water supercritical pressure coolant. Consideration is also given to the features of the coolant flow stability in the supercritical water reactor core. In conclusion, the authors note the importance of further computational work using complex models of neutronic thermal-hydraulic stability built on the basis of modern achievements in the field of neutron physics and thermal physics.


2019 ◽  
Vol 7 (2) ◽  
pp. 215-222
Author(s):  
Setiyaningsih Setiyaningsih ◽  
◽  
Yanti Yulianti ◽  
Simon Sembiring ◽  
◽  
...  

The Research of the supercritical water reactor (SCWR) core design of the cylindrical core model (r, z) using the SRAC program has been done. The SRAC basic code was PIJ and CITATION. PIJ was used to calculate the fuel level and CITATION was used to calculate the reactor core level. The calculation of the reactor core has been done on the 1/4 cylinder core (r, z) and the geometry of the fuel cell was the cylindrical cell. Reactor fuel material was thorium burned 40 GWd/t and 30 GWd/t. The neutron parameters in this research were fuel enrichment, burn up, reactor core size, reactor core configurations, multiplication factor, and power density distribution. Multiplication factor (k-effective) in this research was 1.000004, which is reactor was in a critical condition. The reactor core in critical condition had the size of radius (r) was 130 cm, height (z) was 270 cm and fuel enrichment 2.8262%. The maximum power density was 130.0808 Watts /cm3 which was located at a radius of 25 cm and 135 cm high. The peak power factor in the radial direction was 1.6063 and the peak power factor in the axial direction was 1.3189.


2019 ◽  
Vol 127 ◽  
pp. 351-363 ◽  
Author(s):  
Xianglong Guo ◽  
Yi Fan ◽  
Wenhua Gao ◽  
Rui Tang ◽  
Kai Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document