coenzyme m
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 42)

H-INDEX

45
(FIVE YEARS 6)

2021 ◽  
Vol 12 ◽  
Author(s):  
Carlos Cortés-Albayay ◽  
Vartul Sangal ◽  
Hans-Peter Klenk ◽  
Imen Nouioui

Advanced physicochemical and chemical absorption methods for chlorinated ethenes are feasible but incur high costs and leave traces of pollutants on the site. Biodegradation of such pollutants by anaerobic or aerobic bacteria is emerging as a potential alternative. Several mycobacteria including Mycolicibacterium aurum L1, Mycolicibacterium chubuense NBB4, Mycolicibacterium rhodesiae JS60, Mycolicibacterium rhodesiae NBB3 and Mycolicibacterium smegmatis JS623 have previously been described as assimilators of vinyl chloride (VC). In this study, we compared nucleotide sequence of VC cluster and performed a taxogenomic evaluation of these mycobacterial species. The results showed that the complete VC cluster was acquired by horizontal gene transfer and not intrinsic to the genus Mycobacterium sensu lato. These results also revealed the presence of an additional xcbF1 gene that seems to be involved in Coenzyme M biosynthesis, which is ultimately used in the VC degradation pathway. Furthermore, we suggest for the first time that S/N-Oxide reductase encoding gene was involved in the dissociation of the SsuABC transporters from the organosulfur, which play a crucial role in the Coenzyme M biosynthesis. Based on genomic data, M. aurum L1, M. chubuense NBB4, M. rhodesiae JS60, M. rhodesiae NBB3 and M. smegmatis JS623 were misclassified and form a novel species within the genus Mycobacterium sensu lato. Mycolicibacterium aurum L1T (CECT 8761T = DSM 6695T) was the subject of polyphasic taxonomic studies and showed ANI and dDDH values of 84.7 and 28.5% with its close phylogenetic neighbour, M. sphagni ATCC 33027T. Phenotypic, chemotaxonomic and genomic data considering strain L1T (CECT 8761T = DSM 6695T) as a type strain of novel species with the proposed name, Mycolicibacterium vinylchloridicum sp. nov.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1425
Author(s):  
Yuvaraj Dinakarkumar ◽  
Jothi Ramalingam Rajabathar ◽  
Selvaraj Arokiyaraj ◽  
Iyyappan Jeyaraj ◽  
Sai Ramesh Anjaneyulu ◽  
...  

Methane is a greenhouse gas which poses a great threat to life on earth as its emissions directly contribute to global warming and methane has a 28-fold higher warming potential over that of carbon dioxide. Ruminants have been identified as a major source of methane emission as a result of methanogenesis by their respective gut microbiomes. Various plants produce highly bioactive compounds which can be investigated to find a potential inhibitor of methyl-coenzyme M reductase (the target protein for methanogenesis). To speed up the process and to limit the use of laboratory resources, the present study uses an in-silico molecular docking approach to explore the anti-methanogenic properties of phytochemicals from Cymbopogon citratus, Origanum vulgare, Lavandula officinalis, Cinnamomum zeylanicum, Piper betle, Cuminum cyminum, Ocimum gratissimum, Salvia sclarea, Allium sativum, Rosmarinus officinalis and Thymus vulgaris. A total of 168 compounds from 11 plants were virtually screened. Finally, 25 scrutinized compounds were evaluated against methyl-coenzyme M reductase (MCR) protein using the AutoDock 4.0 program. In conclusion, the study identified 21 out of 25 compounds against inhibition of the MCR protein. Particularly, five compounds: rosmarinic acid (−10.71 kcal/mol), biotin (−9.38 kcal/mol), α-cadinol (−8.16 kcal/mol), (3R,3aS,6R,6aR)-3-(2H-1,3-benzodioxol-4-yl)-6-(2H-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-one (−12.21 kcal/mol), and 2,4,7,9-tetramethyl-5decyn4,7diol (−9.02 kcal/mol) showed higher binding energy towards the MCR protein. In turn, these compounds have potential utility as rumen methanogenic inhibitors in the proposed methane inhibitor program. Ultimately, molecular dynamics simulations of rosmarinic acid and (3R,3aS,6R,6aR) -3-(2H-1,3-benzodioxol-4-yl)-6-(2H-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-one yielded the best possible interaction and stability with the active site of 5A8K protein for 20 ns.


2021 ◽  
pp. 100961
Author(s):  
Gregory A. Prussia ◽  
Krista A. Shisler ◽  
Oleg A. Zadvornyy ◽  
Bennett R. Streit ◽  
Jennifer L. DuBois ◽  
...  
Keyword(s):  

Science ◽  
2021 ◽  
Vol 373 (6550) ◽  
pp. 118-121
Author(s):  
Cedric J. Hahn ◽  
Olivier N. Lemaire ◽  
Jörg Kahnt ◽  
Sylvain Engilberge ◽  
Gunter Wegener ◽  
...  

Ethane, the second most abundant hydrocarbon gas in the seafloor, is efficiently oxidized by anaerobic archaea in syntrophy with sulfate-reducing bacteria. Here, we report the 0.99-angstrom-resolution structure of the proposed ethane-activating enzyme and describe the specific traits that distinguish it from methane-generating and -consuming methyl-coenzyme M reductases. The widened catalytic chamber, harboring a dimethylated nickel-containing F430 cofactor, would adapt the chemistry of methyl-coenzyme M reductases for a two-carbon substrate. A sulfur from methionine replaces the oxygen from a canonical glutamine as the nickel lower-axial ligand, a feature conserved in thermophilic ethanotrophs. Specific loop extensions, a four-helix bundle dilatation, and posttranslational methylations result in the formation of a 33-angstrom-long hydrophobic tunnel, which guides the ethane to the buried active site as confirmed with xenon pressurization experiments.


2021 ◽  
Author(s):  
Anjali Patwardhan ◽  
Ritimukta Sarangi ◽  
Bojana Ginovska ◽  
Simone Raugei ◽  
Stephen W. Ragsdale

ABSTRACTMethyl-coenzyme M reductase (MCR) catalyzes both synthesis and anaerobic oxidation of methane (AOM). Its catalytic site contains Ni at the core of Cofactor F430. The Ni ion, in its low-valent Ni(I) state lights the fuse leading to homolysis of the C-S bond of methyl-coenzyme M (methyl-SCoM) to generate a methyl radical, which abstracts a hydrogen atom from Coenzyme B (HSCoB) to generate methane and the mixed disulfide CoMSSCoB. Direct reversal of this reaction activates methane to initiate anaerobic methane oxidation. Based on crystal structures, which reveal a Ni-thiol interaction between Ni(II)-MCR and inhibitor CoMSH, a Ni(I)-thioether complex with substrate methyl-SCoM has been transposed to canonical MCR mechanisms. Similarly, a Ni(I)-disulfide with CoMSSCoB is proposed for the reverse reaction. However, this Ni(I)-sulfur interaction poses a conundrum for the proposed hydrogen atom abstraction reaction because the >6 Å distance between the thiol group of SCoB and the thiol of SCoM observed in the structures appears too long for such a reaction. Spectroscopic, kinetic, structural and computational studies described here establish that both methyl-SCoM and CoMSSCoB bind to the active Ni(I) state of MCR through their sulfonate groups, forming a hexacoordinate Ni(I)-N/O complex, not Ni(I)-S. These studies rule out direct Ni(I)-sulfur interactions in both substrate-bound states. As a solution to the mechanistic conundrum, we propose that both forward and reverse MCR reactions emanate through long-range electron transfer from Ni(I)-sulfonate complexes with methyl-SCoM or CoMSSCoB, respectively.


2021 ◽  
Author(s):  
H.S. Zehnle ◽  
R. Laso Pérez ◽  
A. Boetius ◽  
G. Wegener

2021 ◽  
Author(s):  
Jue Wu ◽  
Shi-Lu Chen

An Ni(i) F430-like cofactor derived from vitamin B12 can catalyze methane formation in the active site of methyl-coenzyme M reductase.


Sign in / Sign up

Export Citation Format

Share Document