primary structures
Recently Published Documents


TOTAL DOCUMENTS

530
(FIVE YEARS 24)

H-INDEX

55
(FIVE YEARS 3)

Author(s):  
Vu Duc Phuc ◽  
Van-The Tran

The dynamic vibration absorber and tuned mass damper are widely used to suppress harmful vibration of the damped structures under external excitation. The multiple dynamic vibration absorbers have more benefit than the single dynamic vibration absorber. The multiple dynamic vibration absorbers are portability and easy to install because its size is significantly reduced compared to an individual damper. This paper proposes a design method to obtain optimal parameters of multiple dynamic vibration absorbers attached on damped primary structures by using the least squares estimation of equivalent linearization method. An explicit expression of damping ratio and tuning parameters of multiple dynamic vibration absorbers are determined for minimizing the maximum displacement of the primary structures based on the fixed-point theory. The new contribution is provided a reliable theoretical basis for optimizing parameters of the multiple dynamic vibration absorbers that are attached on the damped primary structures. The numerical results reveal the effectiveness of the proposed optimal parameters of multiple dynamic vibration absorbers in reduce vibration of damped primary structures. In the practical applications, this research results allow to divide a large dynamic vibration absorber into many equivalent small dynamic vibration absorbers, which are convenient for manufacturing and installing on the damped primary structures such as high buildings and cable-stayed bridges.


2021 ◽  
Vol 22 (10) ◽  
pp. 5407
Author(s):  
Sailen Barik

Tricopeptide repeats are common in natural proteins, and are exemplified by 34- and 35-residue repeats, known respectively as tetratricopeptide repeats (TPRs) and pentatricopeptide repeats (PPRs). In both classes, each repeat unit forms an antiparallel bihelical structure, so that multiple such units in a polypeptide are arranged in a parallel fashion. The primary structures of the motifs are nonidentical, but amino acids of similar properties occur in strategic positions. The focus of the present work was on PPR, but TPR, its better-studied cousin, is often included for comparison. The analyses revealed that critical amino acids, namely Gly, Pro, Ala and Trp, were placed at distinct locations in the higher order structure of PPR domains. While most TPRs occur in repeats of three, the PPRs exhibited a much greater diversity in repeat numbers, from 1 to 30 or more, separated by spacers of various sequences and lengths. Studies of PPR strings in proteins showed that the majority of PPR units are single, and that the longer tandems (i.e., without space in between) occurred in decreasing order. The multi-PPR domains also formed superhelical vortices, likely governed by interhelical angles rather than the spacers. These findings should be useful in designing and understanding the PPR domains.


2021 ◽  
Vol 30 ◽  
pp. 05008
Author(s):  
Viktoria Iatsenko ◽  
Konstantin Boyarshin ◽  
Olga Bespalova ◽  
Violetta Klyueva ◽  
Yuliya Kurkina ◽  
...  

SARS-CoV accessory protein Orf8b is involved in suppressing interferon-mediated immune response of the infected cell and this might lead to supposition that the corresponding protein 2019-nCoV Orf8 shares the same role. But the tertiary structures of these proteins are still unknown, and the primary structures demonstrate very low homology and different calculating parameters. This time they both are affected by stabilizing selection and in natural viral populations do not tend to be deleted. The question whether in this case very different proteins could share the same function rises from the present data.


2020 ◽  
Vol 3 (1) ◽  
pp. 107
Author(s):  
Assia Chebieb ◽  
Chewki Ziani-Cherif

Streptogramins are potent antibiotics against numerous highly resistant pathogens and therefore are used in last-resort human therapy. These antibiotics are formed of both A- and B-group compounds named pristinamycins that differ in their basic primary structures. Although pristinamycin IIB is among the most interesting antibiotics in this family, it presents numerous problems related to its chemical structure, such as instability at most pH levels, weak solubility in water, and resistance by bacteria. As a response to the need for developing new antimicrobial agents, we have designed a new analog of pristinamycin IIB, based most importantly on the introduction of fluorine atoms. We conjectured indeed that the introduced modifications may solve the above-mentioned problems exhibited by pristinamycin IIB. Our multistep synthetic approach relies on few key reactions, namely a Wittig reaction, a Grubbs reaction, and dihydroxy, -difluoro API (Advanced Pharmaceutical Intermediate) synthesis


2020 ◽  
Vol 74 ◽  
pp. 102825
Author(s):  
Ville Valtonen ◽  
James Bond ◽  
Rob Hindley

2020 ◽  
Vol 86 (5) ◽  
pp. 889-901
Author(s):  
Aya Yoshinaga-Kiriake ◽  
Yuji Nagashima ◽  
Shoichiro Ishizaki ◽  
Kazuo Shiomi
Keyword(s):  

Aerospace ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 17 ◽  
Author(s):  
Giorgio Capovilla ◽  
Enrico Cestino ◽  
Leonardo M. Reyneri ◽  
Giulio Romeo

CubeSats usually adopt aluminum alloys for primary structures, and a number of studies exist on Carbon Fiber Reinforced Plastic (CFRP) primary structures. The internal volume of a spacecraft is usually occupied by battery arrays, reducing the volume available to the payload. In this paper, a CFRP structural/battery array configuration has been designed in order to integrate the electrical power system with the spacecraft bus primary structure. The configuration has been designed according to the modular design philosophy introduced in the AraMiS project. The structure fits on an external face of a 1U CubeSat. Its external side houses two solar cells and the opposite side houses power system circuitry. An innovative cellular structure concept has been adopted and a set of commercial LiPo batteries has been embedded between two CFRP panels and spaced out with CFRP ribs. Compatibility with launch mechanical loads and vibrations has been shown with a finite element analysis. The results suggest that, even with a low degree of structural integration applied to a composite structural battery, more volume and mass can be made available for the payload, with respect to traditional, functionally separated structures employing aluminum alloy. The low degree of integration is introduced to allow the use of relatively cheap and commercial-off-the-shelf components.


Sign in / Sign up

Export Citation Format

Share Document