hsv 1
Recently Published Documents


TOTAL DOCUMENTS

3880
(FIVE YEARS 768)

H-INDEX

103
(FIVE YEARS 11)

2022 ◽  
Vol 10 (1) ◽  
pp. 176
Author(s):  
Irina Anatolyevna Andrievskaya ◽  
Irina Valentinovna Zhukovets ◽  
Inna Victorovna Dovzhikova ◽  
Nataliya Alexandrovna Ishutina ◽  
Ksenia Konstantinovna Petrova

The goal of this research was to evaluate seropositivity to HSV-1 among pregnant women and its effect on the course of pregnancy, childbirth and the condition of newborns. Methods: The serological status, socio-demographic characteristics, parity of pregnancy and childbirth and condition of newborns in women seronegative and seropositive to HSV-1 with recurrent infection and its latent course during pregnancy were analyzed. Newborns from these mothers made up the corresponding groups. Results: Low titers of IgG antibodies to HSV-1 in women in the first trimester of pregnancy are associated with threatened miscarriage, anemia in pregnancy and chronic placental insufficiency. High titers of IgG antibodies to HSV-1 in women in the second trimester of pregnancy are associated with late miscarriages and premature births, anemia in pregnancy, chronic placental insufficiency, labor anomalies, early neonatal complications (cerebral ischemia, respiratory distress syndrome) and localized skin rashes. Low titers of IgG antibodies to HSV-1 in women in the third trimester of pregnancy are associated with premature birth, anemia in pregnancy, chronic placental insufficiency, endometritis, complications of the early neonatal period and localized skin rashes. Conclusions: Our research showed that low or high titers of IgG antibodies to HSV-1, determined by the timing of recurrence of infection during pregnancy, are associated with a high incidence of somatic pathology and complications in pregnancy, childbirth and the neonatal period.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 227
Author(s):  
Mariaconcetta Sicurella ◽  
Maddalena Sguizzato ◽  
Paolo Mariani ◽  
Alessia Pepe ◽  
Anna Baldisserotto ◽  
...  

Herpes simplex virus type 1 infection commonly affects many people, causing perioral sores, as well as severe complications including encephalitis in immunocompromised patients. The main pharmacological approach involves synthetic antiviral drugs, among which acyclovir is the golden standard, often leading to resistant virus strains under long-term use. An alternative approach based on antiviral plant-derived compounds, such as quercetin and mangiferin, demonstrated an antiviral potential. In the present study, semisolid forms for cutaneous application of quercetin and mangiferin were designed and evaluated to treat HSV-1 infection. Phosphatidylcholine- and poloxamer-based gels were produced and characterized. Gel physical–chemical aspects were evaluated by rheological measurements and X-ray diffraction, evidencing the different thermoresponsive behaviors and supramolecular organizations of semisolid forms. Quercetin and mangiferin diffusion kinetics were compared in vitro by a Franz cell system, demonstrating the different gel efficacies to restrain the polyphenol diffusion. The capability of gels to control polyphenol antioxidant potential and stability was evaluated, indicating a higher stability and antioxidant activity in the case of quercetin loaded in poloxamer-based gel. Furthermore, a plaque reduction assay, conducted to compare the virucidal effect of quercetin and mangiferin loaded in gels against the HSV-1 KOS strain, demonstrated the suitability of poloxamer-based gel to prolong the polyphenol activity.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xiaowei Song ◽  
Yiliang Wang ◽  
Feng Li ◽  
Wenyan Cao ◽  
Qiongzhen Zeng ◽  
...  

Herpes simplex virus 1 (HSV-1) is a common neurotropic virus, the herpes simplex encephalitis (HSE) caused by which is considered to be the most common sporadic but fatal encephalitis. Traditional antiviral drugs against HSV-1 are limited to nucleoside analogs targeting viral factors. Inhibition of heat shock protein 90 (Hsp90) has potent anti-HSV-1 activities via numerous mechanisms, but the effects of Hsp90 inhibitors on HSV-1 infection in neuronal cells, especially in the phase of virus entry, are still unknown. In this study, we aimed to investigate the effects of the Hsp90 inhibitors on HSV-1 infection of neuronal cells. Interestingly, we found that Hsp90 inhibitors promoted viral adsorption but inhibited subsequent penetration in neuronal cell lines and primary neurons, which jointly confers the antiviral activity of the Hsp90 inhibitors. Mechanically, Hsp90 inhibitors mainly impaired the interaction between Hsp90 and cofilin, resulting in reduced cofilin membrane distribution, which led to F-actin polymerization to promote viral attachment. However, excessive polymerization of F-actin inhibited subsequent viral penetration. Consequently, unidirectional F-actin polymerization limits the entry of HSV-1 virions into neuron cells. Our research extended the molecular mechanism of Hsp90 in HSV-1 infection in neuron cells and provided a theoretical basis for developing antiviral drugs targeting Hsp90.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Hong Yang ◽  
Feng Xiong ◽  
Hai-Bin Qin ◽  
Qun-Tao Yu ◽  
Jin-Yan Sun ◽  
...  

Abstract Background Viral tracers are important tools for mapping brain connectomes. The feature of predominant anterograde transneuronal transmission offers herpes simplex virus-1 (HSV-1) strain H129 (HSV1-H129) as a promising candidate to be developed as anterograde viral tracers. In our earlier studies, we developed H129-derived anterograde polysynaptic tracers and TK deficient (H129-dTK) monosynaptic tracers. However, their broad application is limited by some intrinsic drawbacks of the H129-dTK tracers, such as low labeling intensity due to TK deficiency and potential retrograde labeling caused by axon terminal invasion. The glycoprotein K (gK) of HSV-1 plays important roles in virus entry, egress, and virus-induced cell fusion. Its deficiency severely disables virus egress and spread, while only slightly limits viral genome replication and expression of viral proteins. Therefore, we created a novel H129-derived anterograde monosynaptic tracer (H129-dgK) by targeting gK, which overcomes the limitations of H129-dTK. Methods Using our established platform and pipeline for developing viral tracers, we generated a novel tracer by deleting the gK gene from the H129-G4. The gK-deleted virus (H129-dgK-G4) was reconstituted and propagated in the Vero cell expressing wildtype H129 gK (gKwt) or the mutant gK (gKmut, A40V, C82S, M223I, L224V, V309M), respectively. Then the obtained viral tracers of gKmut pseudotyped and gKwt coated H129-dgK-G4 were tested in vitro and in vivo to characterize their tracing properties. Results H129-dgK-G4 expresses high levels of fluorescent proteins, eliminating the requirement of immunostaining for imaging detection. Compared to the TK deficient monosynaptic tracer H129-dTK-G4, H129-dgK-G4 labeled neurons with 1.76-fold stronger fluorescence intensity, and visualized 2.00-fold more postsynaptic neurons in the downstream brain regions. gKmut pseudotyping leads to a 77% decrease in retrograde labeling by reducing axon terminal invasion, and thus dramatically improves the anterograde-specific tracing of H129-dgK-G4. In addition, assisted by the AAV helper trans-complementarily expressing gKwt, H129-dgK-G4 allows for mapping monosynaptic connections and quantifying the circuit connectivity difference in the Alzheimer’s disease and control mouse brains. Conclusions gKmut pseudotyped H129-dgK-G4, a novel anterograde monosynaptic tracer, overcomes the limitations of H129-dTK tracers, and demonstrates desirable features of strong labeling intensity, high tracing efficiency, and improved anterograde specificity.


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 60
Author(s):  
Natalia V. Krylova ◽  
Anna O. Kravchenko ◽  
Olga V. Iunikhina ◽  
Anastasia B. Pott ◽  
Galina N. Likhatskaya ◽  
...  

The structural diversity and unique physicochemical properties of sulphated polysaccharides of red algae carrageenans (CRGs), to a great extent, determine the wide range of their antiviral properties. This work aimed to compare the antiviral activities of different structural types of CRGs: against herpes simplex virus type 1 (HSV-1) and enterovirus (ECHO-1). We found that CRGs significantly increased the resistance of Vero cells to virus infection (preventive effect), directly affected virus particles (virucidal effect), inhibited the attachment and penetration of virus to cells, and were more effective against HSV-1. CRG1 showed the highest virucidal effect on HSV-1 particles with a selective index (SI) of 100. CRG2 exhibited the highest antiviral activity by inhibiting HSV-1 and ECHO-1 plaque formation, with a SI of 110 and 59, respectively, when it was added before virus infection. CRG2 also significantly reduced the attachment of HSV-1 and ECHO-1 to cells compared to other CRGs. It was shown by molecular docking that tetrasaccharides—CRGs are able to bind with the HSV-1 surface glycoprotein, gD, to prevent virus–cell interactions. The revealed differences in the effect of CRGs on different stages of the lifecycle of the viruses are apparently related to the structural features of the investigated compounds.


2022 ◽  
Author(s):  
Ruchi Srivastava ◽  
Anshu Agrawal ◽  
Hawa Vahed ◽  
Lbachir BenMohamed

Immune function declines with age, leading to an increased vulnerability to respiratory viral infections. The mechanisms by which aging negatively impacts the innate and adaptive immune system leading to enhanced susceptibility to infections remain to be fully elucidated. In the present study, we used a mouse model of intranasal infection with herpes simplex virus type 1 (HSV-1), a virus that can enter the lungs through the nasal route causing pneumonia, a serious health concern in the elderly. Following intranasal inoculation of young (6 weeks), adult (36 weeks), and aged (68 weeks) with HSV-1 (KOS strain) we: (i) compared the local and systemic innate and adaptive immune response to infection; and (ii) correlated the level and type of immune response to protection against HSV-1 infection. Compared to young and adult mice, aged mice displayed: (i) increased basal level activation of epithelial cells with a decreased expression of TLR3; (ii) increased activation of dendritic cells with increased expression of MHC-1, MHC-II and CD80/86; and (iii) decreased production of type-I interferons upon stimulation; (iv) a delay in cytokines and chemokines production in the lungs; and (v) an impairment in function (CD107 and IFN-g production) of HSV-specific CD8+ T cells. These impairment in innate and adaptive immune responses in aged mice following intranasal HSV-1 inoculation was associated with symptomatic herpes infection. The findings suggest an age-related impairment of both innate and adaptive immune responses which may exacerbate herpes infection and disease in the elderly.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yuwei Zhang ◽  
Jiaojiao Qu ◽  
Li Luo ◽  
Zhongshun Xu ◽  
Xiao Zou

In recent years, the herpes virus infectious hypothesis for Alzheimer’s disease (AD) has gained support from an increasing number of researchers. Herpes simplex virus (HSV) is a potential risk factor associated with AD. This study assessed whether HSV has a causal relationship with AD using a two-sample Mendelian randomization analysis model. Six single-nucleotide polymorphisms (SNPs) associated with HSV-1 and thirteen SNPs associated with HSV-2 were used as instrumental variables in the MR analysis. We estimated MR values of relevance between exposure and the risk of AD using inverse-variance weighted (IVW) method, MR-Egger regression (Egger), and weighted median estimator (WME). To make the conclusion more robust and reliable, sensitivity analyses and RadialMR were performed to evaluate the pleiotropy and heterogeneity. We found that anti-HSV-1 IgG measurements were not associated with risk of AD (OR, 0.96; 95% CI, 0.79–1.18; p = 0.736), and the same was true for HSV-2 (OR, 1.03; 95% CI, 0.94–1.12; p = 0.533). The findings indicated that any HSV infection does not appear to be a genetically valid target of intervention in AD.


2022 ◽  
Author(s):  
Nisha R. Dhanushkodi ◽  
Swayam Prakash ◽  
Ruchi Srivastava ◽  
Pierre-Gregoire A. Coulon ◽  
Danielle Arellano ◽  
...  

Reactivation of herpes simplex virus 1 (HSV-1) from latently infected neurons of the trigeminal ganglia (TG) leads to blinding recurrent herpetic disease in symptomatic (SYMP) individuals. Although the role of T cells in herpes immunity seen in asymptomatic (ASYMP) individuals is heavily explored, the role of B cells is less investigated. In the present study, we evaluated whether B cells are associated with protective immunity against recurrent ocular herpes. The frequencies of circulating HSV-specific memory B cells and of memory follicular helper T cells (CD4 + T fh cells), that help B cells produce antibodies, were compared between HSV-1 infected SYMP and ASYMP individuals. The levels of IgG/IgA and neutralizing antibodies were compared in SYMP and ASYMP individuals. We found that: ( i ) the ASYMP individuals had increased frequencies of HSV-specific CD19 + CD27 + memory B cells; and ( ii ) high frequencies of HSV-specific switched IgG + CD19 + CD27 + memory B cells detected in ASYMP individuals were directly proportional to high frequencies of CD45R0 + CXCR5 + CD4 + memory T fh cells. However, no differences were detected in the level of HSV-specific IgG/IgA antibodies in SYMP and ASYMP individuals. Using the UV-B-induced HSV-1 reactivation mouse model, we found increased frequencies of HSV-specific antibody-secreting plasma HSV-1 gD + CD138 + B cells within the TG and circulation of ASYMP mice compared to SYMP mice. In contrast, no significant differences in the frequencies of B cells were found in the cornea, spleen, and bone-marrow. Our findings suggest that circulating antibody-producing HSV-specific memory B cells recruited locally to the TG may contribute to protection from symptomatic recurrent ocular herpes. IMPORTANCE Reactivation of herpes simplex virus 1 (HSV-1) from latently infected neurons of the trigeminal ganglia (TG) leads to blinding recurrent herpetic disease in symptomatic (SYMP) individuals. Although the role of T cells in herpes immunity against blinding recurrent herpetic disease is heavily explored, the role of B cells is less investigated. In the present study, we found that in both asymptomatic (ASYMP) individuals and ASYMP mice there was increased frequencies of HSV-specific memory B cells that were directly proportional to high frequencies of memory T fh cells. Moreover, following UV-B induce reactivation, we found increased frequencies of HSV-specific antibody-secreting plasma B cells within the TG and circulation of ASYMP mice, compared to SYMP mice. Our findings suggest that circulating antibody-producing HSV-specific memory B cells recruited locally to the TG may contribute to protection from recurrent ocular herpes.


2022 ◽  
Vol 12 ◽  
Author(s):  
Eduardo I. Tognarelli ◽  
Angello Retamal-Díaz ◽  
Mónica A. Farías ◽  
Luisa F. Duarte ◽  
Tomás F. Palomino ◽  
...  

Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections are life-long and highly prevalent in the human population. These viruses persist in the host, eliciting either symptomatic or asymptomatic infections that may occur sporadically or in a recurrent manner through viral reactivations. Clinical manifestations due to symptomatic infection may be mild such as orofacial lesions, but may also translate into more severe diseases, such as ocular infections that may lead to blindness and life-threatening encephalitis. A key feature of herpes simplex viruses (HSVs) is that they have evolved molecular determinants that hamper numerous components of the host’s antiviral innate and adaptive immune system. Importantly, HSVs infect and negatively modulate the function of dendritic cells (DCs), by inhibiting their T cell-activating capacity and eliciting their apoptosis after infection. Previously, we reported that HSV-2 activates the splicing of the mRNA of XBP1, which is related to the activity of the unfolded protein response (UPR) factor Inositol-Requiring Enzyme 1 alpha (IRE-1α). Here, we sought to evaluate if the activation of the IRE-1α pathway in DCs upon HSV infection may be related to impaired DC function after infection with HSV-1 or HSV-2. Interestingly, the pharmacological inhibition of the endonuclease activity of IRE-1α in HSV-1- and HSV-2-infected DCs significantly reduced apoptosis in these cells and enhanced their capacity to migrate to lymph nodes and activate virus-specific CD4+ and CD8+ T cells. These findings suggest that the activation of the IRE-1α-dependent UPR pathway in HSV-infected DCs may play a significant role in the negative effects that these viruses exert over these cells and that the modulation of this signaling pathway may be relevant for enhancing the function of DCs upon infection with HSVs.


Author(s):  
Chaohu Pan ◽  
Qiaomei Cai ◽  
Xiaorong Li ◽  
Lili Li ◽  
Liping Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document