proton beams
Recently Published Documents


TOTAL DOCUMENTS

1228
(FIVE YEARS 151)

H-INDEX

58
(FIVE YEARS 7)

2022 ◽  
Vol 7 (2) ◽  
pp. 024401
Author(s):  
B. Martinez ◽  
S. N. Chen ◽  
S. Bolaños ◽  
N. Blanchot ◽  
G. Boutoux ◽  
...  

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Dan Zhang ◽  
Yifan Li ◽  
Jie Bao ◽  
Changbo Fu ◽  
Mengyun Guan ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 336
Author(s):  
Ines Delfino ◽  
Valerio Ricciardi ◽  
Maria Lepore

Fourier transform infrared microspectroscopy using a synchrotron radiation source (SR-μFTIR) has great potential in the study of the ionizing radiation effects of human cells by analyzing the biochemical changes occurring in cell components. SR-μFTIR spectroscopy has been usefully employed in recent years in some seminal work devoted to shedding light on processes occurring in cells treated by hadron therapy, that is, radiotherapy with charged heavy particles (mainly protons and carbon ions), which is gaining popularity as a cancer treatment modality. These studies are particularly useful for increasing the effectiveness of radiotherapy cancer treatments with charged particles that can offer significant progress in the treatment of deep-seated and/or radioresistant tumors. In this paper, we present a concise revision of these studies together with the basic principles of μFTIR spectroscopy and a brief presentation of the main characteristics of infrared SR sources. From the analysis of the literature regarding the SR-μFTIR spectroscopy investigation on human cells exposed to proton beams, it is clearly shown that changes in DNA, protein, and lipid cell components are evident. In addition, this review points out that the potential offered by SR-μFTIR in investigating the effects induced by charged particle irradiation have not been completely explored. This is a crucial point for the continued improvement of hadron therapy strategies.


2021 ◽  
Vol 11 (24) ◽  
pp. 11986
Author(s):  
Valerio Ricciardi ◽  
Pavel Bláha ◽  
Raffaele Buompane ◽  
Giuseppina Crescente ◽  
Giacomo Cuttone ◽  
...  

Protontherapy (PT) is a fast-growing cancer therapy modality thanks to much-improved normal tissue sparing granted by the charged particles’ inverted dose-depth profile. Protons, however, exhibit a low biological effectiveness at clinically relevant energies. To enhance PT efficacy and counteract cancer radioresistance, Proton–Boron Capture Therapy (PBCT) was recently proposed. PBCT exploits the highly DNA-damaging α-particles generated by the p + 11B→3α (pB) nuclear reaction, whose cross-section peaks for proton energies of 675 keV. Although a significant enhancement of proton biological effectiveness by PBCT has been demonstrated for high-energy proton beams, validation of the PBCT rationale using monochromatic proton beams having energy close to the reaction cross-section maximum is still lacking. To this end, we implemented a novel setup for radiobiology experiments at a 3-MV tandem accelerator; using a scattering chamber equipped with an Au foil scatterer for beam diffusion on the biological sample, uniformity in energy and fluence with uncertainties of 2% and 5%, respectively, was achieved. Human cancer cells were irradiated at this beamline for the first time with 685-keV protons. The measured enhancement in cancer cell killing due to the 11B carrier BSH was the highest among those thus far observed, thereby corroborating the mechanistic bases of PBCT.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Laila König ◽  
Cornelia Jäkel ◽  
Nikolaus von Knebel Doeberitz ◽  
Meinhard Kieser ◽  
Fabian Eberle ◽  
...  

Abstract Background Radiation therapy is an integral part of the multimodal primary therapy of glioblastomas. As the overall prognosis in this tumor entity remains unfavorable, current research is focused on additional drug therapies, which are often accompanied by increases in toxicity. By using proton beams instead of photon beams, it is possible to protect large parts of the brain which are not affected by the tumor more effectively. An initial retrospective matched-pair analysis showed that this theoretical physical benefit is also clinically associated with a reduction in toxicity during therapy and in the first few months thereafter. Methods/design The GRIPS trial is a multicenter, prospective, open-label, randomized, two-arm, phase III study using either intensity modulated photon radiation techniques (standard arm) or proton beam radiotherapy (experimental arm). Additionally, patients are stratified according to "fractionation scheme" (normofractionated/hypofractionated), "subventricular zone involvement" (yes/no) and concurrent chemotherapy (yes/no) and the planned case number is 326 patients. Radiation therapy is performed with a dose of 30 × 2 Gy(RBE) or 33 × 1.8 Gy(RBE), or for patients treated according to the hypofractionation protocol with 15 × 2.67 Gy(RBE). A possible administration of additional chemotherapy (concurrent or adjuvant) or tumor treating fields is applied in dosage and frequency according to the therapy standard outside of this study. The primary endpoint is the cumulative rate of toxicity CTC grade 2 and higher in the first 4 months. Secondary endpoints include overall survival, progression-free survival, quality of life, and neurocognition. Discussion Aim of the GRIPS study is to prospectively assess whether the theoretical physical advantage of proton beam radiotherapy will translate into a clinical reduction of toxicity during and in the first months after therapy. Trial registration ClinicalTrials (NCT): NCT04752280.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5790
Author(s):  
Shouyi Wei ◽  
Haibo Lin ◽  
J. Isabelle Choi ◽  
Charles B. Simone ◽  
Minglei Kang

Purpose: While transmission proton beams have been demonstrated to achieve ultra-high dose rate FLASH therapy delivery, they are unable to spare normal tissues distal to the target. This study aims to compare FLASH treatment planning using single energy Bragg peak proton beams versus transmission proton beams in lung tumors and to evaluate Bragg peak plan optimization, characterize plan quality, and quantify organ-at-risk (OAR) sparing. Materials and Methods: Both Bragg peak and transmission plans were optimized using an in-house platform for 10 consecutive lung patients previously treated with proton stereotactic body radiation therapy (SBRT). To bring the dose rate up to the FLASH-RT threshold, Bragg peak plans with a minimum MU/spot of 1200 and transmission plans with a minimum MU/spot of 400 were developed. Two common prescriptions, 34 Gy in 1 fraction and 54 Gy in 3 fractions, were studied with the same beam arrangement for both Bragg peak and transmission plans (n = 40 plans). RTOG 0915 dosimetry metrics and dose rate metrics based on different dose rate calculations, including average dose rate (ADR), dose-averaged dose rate (DADR), and dose threshold dose rate (DTDR), were investigated. We then evaluated the effect of beam angular optimization on the Bragg peak plans to explore the potential for superior OAR sparing. Results: Bragg peak plans significantly reduced doses to several OAR dose parameters, including lung V7.4Gy and V7Gy by 32.0% (p < 0.01) and 30.4% (p < 0.01) for 34Gy/fx plans, respectively; and by 40.8% (p < 0.01) and 41.2% (p < 0.01) for 18Gy/fx plans, respectively, compared with transmission plans. Bragg peak plans have ~3% less in DADR and ~10% differences in mean OARs in DTDR and DADR relative to transmission plans due to the larger portion of lower dose regions of Bragg peak plans. With angular optimization, optimized Bragg peak plans can further reduce the lung V7Gy by 20.7% (p < 0.01) and V7.4Gy by 19.7% (p < 0.01) compared with Bragg peak plans without angular optimization while achieving a similar 3D dose rate distribution. Conclusion: The single-energy Bragg peak plans achieve superior dosimetry performances in OARs to transmission plans with comparable dose rate performances for lung cancer FLASH therapy. Beam angle optimization can further improve the OAR dosimetry parameters with similar 3D FLASH dose rate coverage.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sang Woo Lee ◽  
Yu-Jeong Kwon ◽  
Inwoo Baek ◽  
Hong-Il Choi ◽  
Joon-Woo Ahn ◽  
...  

Protons may have contributed to the evolution of plants as a major component of cosmic-rays and also have been used for mutagenesis in plants. Although the mutagenic effect of protons has been well-characterized in animals, no comprehensive phenotypic and genomic analyses has been reported in plants. Here, we investigated the phenotypes and whole genome sequences of Arabidopsis M2 lines derived by irradiation with proton beams and gamma-rays, to determine unique characteristics of proton beams in mutagenesis. We found that mutation frequency was dependent on the irradiation doses of both proton beams and gamma-rays. On the basis of the relationship between survival and mutation rates, we hypothesized that there may be a mutation rate threshold for survived individuals after irradiation. There were no significant differences between the total mutation rates in groups derived using proton beam or gamma-ray irradiation at doses that had similar impacts on survival rate. However, proton beam irradiation resulted in a broader mutant phenotype spectrum than gamma-ray irradiation, and proton beams generated more DNA structural variations (SVs) than gamma-rays. The most frequent SV was inversion. Most of the inversion junctions contained sequences with microhomology and were associated with the deletion of only a few nucleotides, which implies that preferential use of microhomology in non-homologous end joining was likely to be responsible for the SVs. These results show that protons, as particles with low linear energy transfer (LET), have unique characteristics in mutagenesis that partially overlap with those of low-LET gamma-rays and high-LET heavy ions in different respects.


2021 ◽  
Vol 11 (21) ◽  
pp. 9823
Author(s):  
Sergio Mingo Barba ◽  
Francesco Schillaci ◽  
Roberto Catalano ◽  
Giada Petringa ◽  
Daniele Margarone ◽  
...  

ELIMED has been developed and installed at ELI beamlines as a part of the ELIMAIA beamline to transport, monitor, and use laser-driven ion beams suitable for multidisciplinary applications, including biomedical ones. This paper aims to investigate the feasibility to perform radiobiological experiments using laser-accelerated proton beams with intermediate energies (up to 30 MeV). To reach this goal, we simulate a proton source based on experimental data like the ones expected to be available in the first phase of ELIMED commissioning by using the G4-ELIMED application (an application based on the Geant4 toolkit that simulates the full ELIMED beamline). This allows the study of transmission efficiency and the final characteristics of the proton beam at the sample irradiation point. The Energy Selector System is used as an active energy modulator to obtain the desired beam features in a relatively short irradiation time (around 6 min). Furthermore, we demonstrate the capability of the beamline to filter out other ion contaminants, typically co-accelerated in a laser-plasma environment. These results can be considered as a detailed feasibility study for the use of ELIMED for various user applications such as radiobiological experiments with ultrahigh dose rate proton beams.


2021 ◽  
Vol 133 (4) ◽  
pp. 396-403
Author(s):  
V. S. Belyaev ◽  
B. V. Zagreev ◽  
A. Yu. Kedrov ◽  
A. G. Kol’chugin ◽  
V. P. Krainov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document