female mice
Recently Published Documents


TOTAL DOCUMENTS

4945
(FIVE YEARS 1463)

H-INDEX

98
(FIVE YEARS 12)

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 349
Author(s):  
Mostafa M. Abbas ◽  
Paul Soto ◽  
Latha Ramalingam ◽  
Yasser El-Manzalawy ◽  
Halima Bensmail ◽  
...  

Children are prescribed second-generation antipsychotic (SGA) medications, such as olanzapine (OLZ) for FDA-approved and “off-label” indications. The long-term impact of early-life SGA medication exposure is unclear. Olanzapine and other SGA medications are known to cause excessive weight gain in young and adult patients, suggesting the possibility of long-term complications associated with the use of these drugs, such as obesity, diabetes, and heart disease. Further, the weight gain effects of OLZ have previously been shown to depend on the presence of gut bacteria and treatment with OLZ, which shifts gut bacteria toward an “obesogenic” profile. The purpose of the current study was to evaluate changes in gut bacteria in adult mice following early life treatment with OLZ and being fed either a high-fat diet or a high-fat diet supplemented with fish oil, which has previously been shown to counteract gut dysbiosis, weight gain, and inflammation produced by a high-fat diet. Female and male C57Bl/6J mice were fed a high fat diet without (HF) or with the supplementation of fish oil (HF-FO) and treated with OLZ from postnatal day (PND) 37–65 resulting in four groups of mice: mice fed a HF diet and treated with OLZ (HF-OLZ), mice fed a HF diet and treated with vehicle (HF), mice fed a HF-FO diet and treated with OLZ (HF-FO-OLZ), and mice fed a HF-FO diet and treated with vehicle (HF-FO). Following euthanasia at approximately 164 days of age, we determined changes in gut bacteria populations and serum LPS binding protein, an established marker of gut inflammation and dysbiosis. Our results showed that male HF-FO and HF-FO-OLZ mice had lower body weights, at sacrifice, compared to the HF group, with a comparable body weight across groups in female mice. HF-FO and HF-FO-OLZ male groups also exhibited lower serum LPS binding protein levels compared to the HF group, with no differences across groups in female mice. Gut microbiota profiles were also different among the four groups; the Bacteroidetes-to-Firmicutes (B/F) ratio had the lowest value of 0.51 in the HF group compared to 0.6 in HF-OLZ, 0.9 in HF-FO, and 1.1 in HF-FO-OLZ, with no differences in female mice. In conclusion, FO reduced dietary obesity and its associated inflammation and increased the B/F ratio in male mice but did not benefit the female mice. Although the weight lowering effects of OLZ were unexpected, FO effects persisted in the presence of olanzapine, demonstrating its potential protective effects in male subjects using antipsychotic drugs.


2022 ◽  
Vol 8 ◽  
Author(s):  
Nadine Norton ◽  
Katelyn A. Bruno ◽  
Damian N. Di Florio ◽  
Emily R. Whelan ◽  
Anneliese R. Hill ◽  
...  

Background: Doxorubicin is a widely used and effective chemotherapy, but the major limiting side effect is cardiomyopathy which in some patients leads to congestive heart failure. Genetic variants in TRPC6 have been associated with the development of doxorubicin-induced cardiotoxicity, suggesting that TRPC6 may be a therapeutic target for cardioprotection in cancer patients.Methods: Assessment of Trpc6 deficiency to prevent doxorubicin-induced cardiac damage and function was conducted in male and female B6.129 and Trpc6 knock-out mice. Mice were treated with doxorubicin intraperitoneally every other day for a total of 6 injections (4 mg/kg/dose, cumulative dose 24 mg/kg). Cardiac damage was measured in heart sections by quantification of vacuolation and fibrosis, and in heart tissue by gene expression of Tnni3 and Myh7. Cardiac function was determined by echocardiography.Results: When treated with doxorubicin, male Trpc6-deficient mice showed improvement in markers of cardiac damage with significantly reduced vacuolation, fibrosis and Myh7 expression and increased Tnni3 expression in the heart compared to wild-type controls. Similarly, male Trpc6-deficient mice treated with doxorubicin had improved LVEF, fractional shortening, cardiac output and stroke volume. Female mice were less susceptible to doxorubicin-induced cardiac damage and functional changes than males, but Trpc6-deficient females had improved vacuolation with doxorubicin treatment. Sex differences were observed in wild-type and Trpc6-deficient mice in body-weight and expression of Trpc1, Trpc3 and Rcan1 in response to doxorubicin.Conclusions: Trpc6 promotes cardiac damage following treatment with doxorubicin resulting in cardiomyopathy in male mice. Female mice are less susceptible to cardiotoxicity with more robust ability to modulate other Trpc channels and Rcan1 expression.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Danielle E. Soranno ◽  
Peter Baker ◽  
Lara Kirkbride-Romeo ◽  
Sara A. Wennersten ◽  
Kathy Ding ◽  
...  

AbstractAcute kidney injury (AKI) is common in patients, causes systemic sequelae, and predisposes patients to long-term cardiovascular disease. To date, studies of the effects of AKI on cardiovascular outcomes have only been performed in male mice. We recently demonstrated that male mice developed diastolic dysfunction, hypertension and reduced cardiac ATP levels versus sham 1 year after AKI. The effects of female sex on long-term cardiac outcomes after AKI are unknown. Therefore, we examined the 1-year cardiorenal outcomes following a single episode of bilateral renal ischemia–reperfusion injury in female C57BL/6 mice using a model with similar severity of AKI and performed concomitantly to recently published male cohorts. To match the severity of AKI between male and female mice, females received 34 min of ischemia time compared to 25 min in males. Serial renal function, echocardiograms and blood pressure assessments were performed throughout the 1-year study. Renal histology, and cardiac and plasma metabolomics and mitochondrial function in the heart and kidney were evaluated at 1 year. Measured glomerular filtration rates (GFR) were similar between male and female mice throughout the 1-year study period. One year after AKI, female mice had preserved diastolic function, normal blood pressure, and preserved levels of cardiac ATP. Compared to males, females demonstrated pathway enrichment in arginine metabolism and amino acid related energy production in both the heart and plasma, and glutathione in the plasma. Cardiac mitochondrial respiration in Complex I of the electron transport chain demonstrated improved mitochondrial function in females compared to males, regardless of AKI or sham. This is the first study to examine the long-term cardiac effects of AKI on female mice and indicate that there are important sex-related cardiorenal differences. The role of female sex in cardiovascular outcomes after AKI merits further investigation.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262577
Author(s):  
Jin Tanaka ◽  
Fuka Ishikawa ◽  
Tomoki Jinno ◽  
Motoki Miyakita ◽  
Haruka Miyamori ◽  
...  

cAMP responsive element binding protein (CREB)-regulated transcription coactivators (CRTCs) regulate gene transcription in response to an increase in intracellular cAMP or Ca2+ levels. To date, three isoforms of CRTC have been identified in mammals. All CRTCs are widely expressed in various regions of the brain. Numerous studies have shown the importance of CREB and CRTC in energy homeostasis. In the brain, the paraventricular nucleus of the hypothalamus (PVH) plays a critical role in energy metabolism, and CRTC1 and CRTC2 are highly expressed in PVH neuronal cells. The single-minded homolog 1 gene (Sim1) is densely expressed in PVH neurons and in some areas of the amygdala neurons. To determine the role of CRTCs in PVH on energy metabolism, we generated mice that lacked CRTC1 and CRTC2 in Sim1 cells using Sim-1 cre mice. We found that Sim1 cell-specific CRTC1 and CRTC2 double-knockout mice were sensitive to high-fat diet (HFD)-induced obesity. Sim1 cell-specific CRTC1 and CRTC2 double knockout mice showed hyperphagia specifically for the HFD, but not for the normal chow diet, increased fat mass, and no change in energy expenditure. Interestingly, these phenotypes were stronger in female mice than in male mice, and a weak phenotype was observed in the normal chow diet. The lack of CRTC1 and CRTC2 in Sim1 cells changed the mRNA levels of some neuropeptides that regulate energy metabolism in female mice fed an HFD. Taken together, our findings suggest that CRTCs in Sim1 cells regulate gene expression and suppress excessive fat intake, especially in female mice.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Laurence Dion-Albert ◽  
Alice Cadoret ◽  
Ellen Doney ◽  
Fernanda Neutzling Kaufmann ◽  
Katarzyna A. Dudek ◽  
...  

AbstractPrevalence, symptoms, and treatment of depression suggest that major depressive disorders (MDD) present sex differences. Social stress-induced neurovascular pathology is associated with depressive symptoms in male mice; however, this association is unclear in females. Here, we report that chronic social and subchronic variable stress promotes blood-brain barrier (BBB) alterations in mood-related brain regions of female mice. Targeted disruption of the BBB in the female prefrontal cortex (PFC) induces anxiety- and depression-like behaviours. By comparing the endothelium cell-specific transcriptomic profiling of the mouse male and female PFC, we identify several pathways and genes involved in maladaptive stress responses and resilience to stress. Furthermore, we confirm that the BBB in the PFC of stressed female mice is leaky. Then, we identify circulating vascular biomarkers of chronic stress, such as soluble E-selectin. Similar changes in circulating soluble E-selectin, BBB gene expression and morphology can be found in blood serum and postmortem brain samples from women diagnosed with MDD. Altogether, we propose that BBB dysfunction plays an important role in modulating stress responses in female mice and possibly MDD.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
G. Krivoshein ◽  
E. A. Tolner ◽  
van den Maagdenberg AMJM ◽  
R. A. Giniatullin

Abstract Background Migraine is a common brain disorder that predominantly affects women. Migraine pain seems mediated by the activation of mechanosensitive channels in meningeal afferents. Given the role of transient receptor potential melastatin 3 (TRPM3) channels in mechanical activation, as well as hormonal regulation, these channels may play a role in the sex difference in migraine. Therefore, we investigated whether nociceptive firing induced by TRPM3 channel agonists in meningeal afferents was different between male and female mice. In addition, we assessed the relative contribution of mechanosensitive TRPM3 channels and that of mechanosensitive Piezo1 channels and transient receptor potential vanilloid 1 (TRPV1) channels to nociceptive firing relevant to migraine in both sexes. Methods Ten- to 13-week-old male and female wildtype (WT) C57BL/6 J mice were used. Nociceptive spikes were recorded directly from nerve terminals in the meninges in the hemiskull preparations. Results Selective agonists of TRPM3 channels profoundly activated peripheral trigeminal nerve fibres in mouse meninges. A sex difference was observed for nociceptive firing induced by either PregS or CIM0216, both agonists of TRPM3 channels, with the induced firing being particularly prominent for female mice. Application of Yoda1, an agonist of Piezo1 channels, or capsaicin activating TRPV1 channels, although also leading to increased nociceptive firing of meningeal fibres, did not reveal a sex difference. Cluster analyses of spike activities indicated a massive and long-lasting activation of TRPM3 channels with preferential induction of large-amplitude spikes in female mice. Additional spectral analysis revealed ​a dominant contribution of spiking activity in the α- and β-ranges following TRPM3 agonists in female mice. Conclusions Together, we revealed a specific mechanosensitive profile of nociceptive firing in females and suggest TRPM3 channels as a potential novel candidate for the generation of migraine pain, with particular relevance to females.


2022 ◽  
Vol 23 (3) ◽  
Author(s):  
Ali Mooshekhian ◽  
Thaisa Sandini ◽  
Zelan Wei ◽  
Rebekah Van Bruggen ◽  
Haibo Li ◽  
...  

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0258557
Author(s):  
Kristy L. Thomas ◽  
Callie L. Root ◽  
Jonathan M. Peterson

Alcoholic liver disease (ALD) is one of the leading causes of morbidity and mortality from hepatic complications. C1q/TNF-related protein 3 (CTRP3) is an adiponectin paralog and, in male mice, increased levels of circulating CTRP3 prevents ALD. Therefore, the purpose of this study was to replicate the observed hepatoprotective effect of elevated circulating CTRP3 levels in female mice. Twelve-week-old female wildtype and CTRP3 overexpressing transgenic mice were fed the Lieber-DeCarli alcohol-containing liquid diet (5% vol/vol) for 6 weeks. Unlike the previous study with male mice, CTRP3 overexpression provided no attenuation to alcohol-induced hepatic lipid accumulation, cytokine production, or overall mortality. In conclusion, there appears to be a clear sex-specific effect of CTRP3 in response to alcohol consumption that needs to be explored further.


Author(s):  
Xiangyu Zheng ◽  
Christina Deacon ◽  
Abigail J King ◽  
Daniel R Machin

Many individuals in industrialized societies consume a high salt, western diet, however, the effects of this diet on microcirculatory properties and glycocalyx barrier function are unknown. Young genetically heterogeneous male and female mice underwent 12 weeks of normal chow diet (NC), NC diet with 4% salt (NC4%), western diet (WD), or WD with 4% salt (WD4%). Microcirculatory properties and glycocalyx barrier function were evaluated in the mesenteric microcirculation using an intravital microscope equipped with an automated capture and analysis system. Total microvascular density summed across 4-25 μm microvessel segment diameters was lower in NC4% compared to NC and WD (P<0.05). Perfused boundary region (PBR), a marker of glycocalyx barrier function, averaged across 4-25 μm microvessel segment diameters was similar between NC and NC4%, as well as between WD and WD4% (P>0.05). PBR was lower in WD and WD4% compared to NC and NC4% (P<0.05), indicating augmented glycocalyx barrier function in WD and WD4%. There were strong, inverse relationships between PBR and adiposity and blood glucose (r=-0.44 to -0.61, P<0.05). In summary, NC4% induces deleterious effects on microvascular density, whereas WD augments glycocalyx barrier function. Interestingly, the combination of high salt, western diet in WD4% resulted in lower total microvascular density like NC4% and augmented glycocalyx barrier function like WD. These data suggest distinct microcirculatory adaptations to high salt and western diets that coincide when these diets are combined in young genetically heterogeneous male and female mice.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Solène Pedron ◽  
Stéphanie Dumontoy ◽  
Maria del Carmen González-Marín ◽  
Fabien Coune ◽  
Andries Van Schuerbeek ◽  
...  

AbstractTranscranial direct current stimulation (tDCS) is an emerging noninvasive brain neuromodulation technique aimed at relieving symptoms associated with psychiatric disorders, including addiction. The goal of the present study was to better identify which phase of alcohol-related behavior (hedonic effect, behavioral sensitization, self-administration, or motivation to obtain the drug) might be modulated by repeated anodal tDCS over the frontal cortex (0.2 mA, 20 min, twice a day for 5 consecutive days), using female mice as a model. Our data showed that tDCS did not modulate the hedonic effects of ethanol as assessed by a conditioned place preference test (CPP) or the expression of ethanol-induced behavioral sensitization. Interestingly, tDCS robustly reduced reacquisition of ethanol consumption (50% decrease) following extinction of self-administration in an operant paradigm. Furthermore, tDCS significantly decreased motivation to drink ethanol on a progressive ratio schedule (30% decrease). Taken together, our results show a dissociation between the effects of tDCS on “liking” (hedonic aspect; no effect in the CPP) and “wanting” (motivation; decreased consumption on a progressive ratio schedule). Our tDCS procedure in rodents will allow us to better understand its mechanisms of action in order to accelerate its use as a complementary and innovative tool to help alcohol-dependent patients maintain abstinence or reduce ethanol intake.


Sign in / Sign up

Export Citation Format

Share Document