ester prodrug
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 21)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 19 ◽  
Author(s):  
Murad Abualhasan ◽  
Mohyeddin Assali ◽  
Abeer Mahmoud ◽  
Abdel Naser Zaid ◽  
Numan Malkieh

Background: Rutin is available on the market as a topical formulation for the treatment of several conditions, such as internal bleeding, hemorrhoids, and varicose veins. However, these gels have low solubility and limited bioavailability due to their decreased lipid solubility. Objective: In this study, we aimed to synthesize potentially novel lipophilic rutin prodrugs. The suggested library of these rutin prodrugs includes changing the solubility profile to facilitate rutin transport across biological barriers, thereby improving drug delivery through topical application. Methods: Six rutin derivatives were synthesized based on the ester prodrug strategy. The synthesized compounds were formulated as topical ointments, and their permeability via Franz diffusion was measured. An ultraviolet (UV) analytical method was developed in our laboratories to quantify rutin derivatives both as raw materials and in final dosage forms. The analytical method was then validated. Result: The results of Franz diffusion analyses showed that transdermal permeability increased by 10_Fo.jpgl height=""d for decaacetylated rutin compared to the other esterified rutins. A simple analytical method for the analysis of the formulated rutin ester was developed and validated. Moreover, the formulated ointment of decaacetylated rutin in our research laboratory was found to be stable under stability accelerated conditions. Synthesis of potentially more lipophilic compounds would yield novel rutin prodrugs suitable for topical formulation. Conclusion: This project provides a synthetic approach for many similar natural products. The research idea and strategy followed in this research project could be adapted by pharmaceutical and herbal establishments.


Author(s):  
NIJA B ◽  
Arun Rasheed ◽  
A Kottaimuthu

The present investigation developed the ester prodrugs of Non-steroidal anti inflammatory drugs (NSAIDs), Mefenamic acid and Flurbiprofen by conjugating with the natural antioxidant, 4-methyl umbelliferone that resulted the formation of Mefenamic acid-umbelliferone ester prodrug and Flurbiprofen-umbelliferone ester prodrug .The principal objective this study is the synthesis of the ester prodrugs of NSAIDs with the enhanced therapeutic activity and minimized side effects. Prodrugs were synthesized by coupling method using N,N’- dicyclohexylcarbodiimide/4-dimethylaminopyrimidine, subjected to  physical, chemical characterization, spectral characterization (IR, 1H NMR, 13C NMR and Mass spectra),hydrolysis-kinetic study and pharmacological evaluation such as anti-inflammatory, ulcerogenecity as well as the effect of the NSAIDs in the central nervous system against degenerative mechanisms. The current study revealed that the umbelliferone conjugates of NSAIDs which upon administration would release the parent drug as a result of enzymatic or non-enzymatic hydrolysis in the desired site with enhanced anti inflammatory activity and reduction in the gastro intestinal toxicity. Also the synthesized pordrugs showed enhanced brain targeting efficiency with protective action against the degenerative processes.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 598
Author(s):  
Yuchen Wang ◽  
Xiao Liu ◽  
Xiaowen Zou ◽  
Shuting Wang ◽  
Lijun Luo ◽  
...  

IMMH-010 is an ester prodrug of YPD-29B, a potent programmed cell death ligand 1 (PD-L1) inhibitor. The metabolism of IMMH-010 was investigated and compared in various species. Four metabolites of IMMH-010 were identified, and the major metabolite was the parent compound, YPD-29B, which was mainly catalyzed by carboxylesterase 1 (CES1). We observed IMMH-010 metabolism in the plasma of various species. IMMH-010 was rapidly metabolized to YPD-29B in rat and mouse plasma, whereas it remained stable in human and monkey plasma. In the liver S9 fractions of human, monkey, dog, and rat, IMMH-010 was quickly transformed to YPD-29B with no obvious differences among species. In addition, the transformation ratio of IMMH-010 to YPD-29B was low in rat and human intestines, which indicated that the intestine was not an important site for IMMH-010 hydrolysis. Moreover, we demonstrated the remarkable antitumor efficacy of IMMH-010 in B16F10 melanoma and MC38 colon carcinoma xenograft mouse models. We also compared the pharmacokinetic profiles of IMMH-010 in rodents and primates. After oral administration of IMMH-010, the general exposure of active metabolite YPD-29B was slightly lower in primates than in rodents, suggesting that data should be extrapolated cautiously from rodents to humans.


2020 ◽  
Author(s):  
Justin Miller ◽  
Ishaan T Shah ◽  
Jayda Hatten ◽  
Yasaman Barekatain ◽  
Elizabeth A Mueller ◽  
...  

Carboxy ester prodrugs have been widely employed as a means to increase oral absorption and potency of phosphonate antibiotics. Prodrugging can successfully mask problematic chemical features that prevent cellular uptake and can be used to target delivery of compounds to specific tissues. However, many carboxy ester promoieties are rapidly hydrolyzed by serum esterases, curbing their potential therapeutic applications. While carboxy ester-based prodrug targeting is feasible, it has been limited in microbes due to a paucity of information about the selectivity of microbial esterases. Here we identify the bacterial esterases, GloB and FrmB, that are required for carboxy ester prodrug activation in Staphylococcus aureus. Additionally, we determine the substrate specificities for FrmB and GloB and demonstrate the structural basis of these preferences. Finally, we establish the carboxy ester substrate specificities of human and mouse sera, identifying several promoieties likely to be serum esterase-resistant while still being microbially labile. These studies lay the groundwork for structure guided design of antistaphyloccal promoieties, enabling a massive expansion of the antistaphyloccal druggable space.


Drug Research ◽  
2020 ◽  
Author(s):  
Meenakshi Dhanawat ◽  
Sumeet Gupta ◽  
Dinesh Kumar Mehta ◽  
Rina Das

Nipecotic acid is considered to be one of the most potent inhibitors of neuronal and glial-aminobutyric acid (GABA) uptake in vitro. Due to its hydrophilic nature, nipecotic acid does not readily cross the blood-brain barrier (BBB). Large neutral amino acids (LAT1)-knotted nipecotic acid prodrug was designed and synthesized with the aim to enhance the BBB permeation by the use of carrier-mediated transport. The synthesized prodrug was tested in animal models of Pentylenetetrazole (PTZ)-induced convulsions in mice. Further pain studies were carried out followed by neurotoxicity estimation by writhing and rota-rod test respectively. HPLC data suggests that the synthesized prodrug has improved penetration through BBB. Nipecotic acid-L-serine ester prodrug with considerable anti-epileptic activity, and the ability to permeate the BBB has been successfully synthesized. Graphical Abstract.


2020 ◽  
Vol 57 (1) ◽  
pp. 87-90
Author(s):  
Vjekoslav Peitl ◽  
Darko Vlahović

Ansofaxine hydrochloride (LY03005; LPM570065) is a triple reuptake inhibitor that inhibits serotonin, dopamine and norepinephrine reuptake. This novel triple reuptake inhibitor is a carboxylic acid ester prodrug of desvenlafaxine. It is currently under development for the treatment of major depressive disorder - a frequent and heterogeneous disorder induced by a complex pattern of genetic, epigenetic, developmental, and environmental factors.


2020 ◽  
Vol 180 ◽  
pp. 114127 ◽  
Author(s):  
Brian R. Thompson ◽  
Jian Shi ◽  
Hao-Jie Zhu ◽  
David E. Smith

Sign in / Sign up

Export Citation Format

Share Document