readout scheme
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 20)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 17 (01) ◽  
pp. C01037
Author(s):  
M. Collonge ◽  
P. Busca ◽  
P. Fajardo ◽  
M. Williams

Abstract This work presents the first simulation results of the incremental digital integration readout, a charge-integrating front-end scheme with in-pixel digitisation and accumulation. This novel readout concept is at the core of the XIDer (X-ray Integrating Detector) project, which aims to design 2D pixelated X-ray detectors optimised for high energy scattering and diffraction applications for the next generation of synchrotron radiation sources such as the ESRF Extremely Brilliant Source (EBS). The digital integration readout and the XIDer detector open the possibilities for high-duty-cycle operation under very high photon flux, fast frame-rate and high dynamic range with single-photon sensitivity in the 30–100 keV energy range. The readout method allows for noise-free effective X-ray detection. The digital integration concept is currently under investigation to evaluate the impact of main critical design parameters to identify the strengths and weaknesses of the readout scheme and consequently to propose refinements in the final implementation. Simulations have been performed with a dedicated Monte Carlo simulation tool, X-DECIMO, a modular Python package designed to recreate the complete detection chain of X-ray detectors for synchrotron radiation experiments. Losses and non-linearities of the readout scheme are simulated and quantified. In addition to presenting simulation results for this novel readout scheme, this work underlines the potential of the approach and some of its limitations.


Author(s):  
Kouji Nakamura

Abstract The balanced homodyne detection as a readout scheme of gravitational-wave detectors is carefully examined from the quantum field theoretical point of view. The readout scheme in gravitational-wave detectors specifies the directly measured quantum operator in the detection. This specification is necessary when we apply the recently developed quantum measurement theory to gravitational-wave detections. We examine the two models of measurement. One is the model in which the directly measured quantum operator at the photodetector is Glauber’s photon number operator, and the other is the model in which the power operator of the optical field is directly measured. These two are regarded as ideal models of photodetectors. We first show these two models yield the same expectation value of the measurement. Since it is consensus in the gravitational-wave community that vacuum fluctuations contribute to the noises in the detectors, we also clarify the contributions of vacuum fluctuations to the quantum noise spectral density without using the two-photon formulation which is used in the gravitational-wave community. We found that the conventional noise spectral density in the two-photon formulation includes vacuum fluctuations from the main interferometer but does not include those from the local oscillator. Although the contribution of vacuum fluctuations from the local oscillator theoretically yields the difference between the above two models in the noise spectral densities, this difference is negligible in realistic situations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yong Suk Oh ◽  
Jae-Hwan Kim ◽  
Zhaoqian Xie ◽  
Seokjoo Cho ◽  
Hyeonseok Han ◽  
...  

AbstractCapabilities for continuous monitoring of pressures and temperatures at critical skin interfaces can help to guide care strategies that minimize the potential for pressure injuries in hospitalized patients or in individuals confined to the bed. This paper introduces a soft, skin-mountable class of sensor system for this purpose. The design includes a pressure-responsive element based on membrane deflection and a battery-free, wireless mode of operation capable of multi-site measurements at strategic locations across the body. Such devices yield continuous, simultaneous readings of pressure and temperature in a sequential readout scheme from a pair of primary antennas mounted under the bedding and connected to a wireless reader and a multiplexer located at the bedside. Experimental evaluation of the sensor and the complete system includes benchtop measurements and numerical simulations of the key features. Clinical trials involving two hemiplegic patients and a tetraplegic patient demonstrate the feasibility, functionality and long-term stability of this technology in operating hospital settings.


Author(s):  
Varun Kumar ◽  
Bibhudatta Satapathy ◽  
Wilfred Kisku ◽  
Amandeep Kaur ◽  
Deepak Mishra

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1708
Author(s):  
Oliver Gerberding ◽  
Katharina-Sophie Isleif

We present a compact optical head design for wide-range and low noise displacement sensing using deep frequency modulation interferometry (DFMI). The on-axis beam topology is realised in a quasi-monolithic component and relies on cube beamsplitters and beam transmission through perpendicular surfaces to keep angular alignment constant when operating in air or in a vacuum, which leads to the generation of ghost beams that can limit the phase readout linearity. We investigated the coupling of these beams into the non-linear phase readout scheme of DFMI and implemented adjustments of the phase estimation algorithm to reduce this effect. This was done through a combination of balanced detection and the inherent orthogonality of beat signals with different relative time-delays in deep frequency modulation interferometry, which is a unique feature not available for heterodyne, quadrature or homodyne interferometry.


Author(s):  
Oliver Gerberding ◽  
Katharina-Sophie Isleif

We present a compact optical head design for wide-range and low noise displacement sensing using deep frequency modulation interferometry. The on-axis beam topology is realised in a quasi-monolithic component and relies on cube beamsplitters and beam transmission through perpendicular surfaces to keep angular alignment constant when operating in air or vacuum, which leads to the generation of ghost beams that can limit the phase readout linearity. We investigate the coupling of these beams into the non-linear phase readout scheme of DFMI and demonstrate adjustments of the phase estimation algorithm to reduce this effect. This is done through a combination of balanced detection and the inherent orthogonality of beat signals with different relative time-delays in deep frequency modulation interferometry that is a unique feature not available for heterodyne, quadrature or homodyne interferometry.


2021 ◽  
Vol 251 ◽  
pp. 03020
Author(s):  
Sergey Gorbunov ◽  
Ernst Hellbär ◽  
Gian Michele Innocenti ◽  
Marian Ivanov ◽  
Maja Kabus ◽  
...  

The Time Projection Chamber (TPC) of the ALICE experiment at the CERN LHC was upgraded for Run 3 and Run 4. Readout chambers based on Gas Electron Multiplier (GEM) technology and a new readout scheme allow continuous data taking at the highest interaction rates expected in Pb-Pb collisions. Due to the absence of a gating grid system, a significant amount of ions created in the multiplication region is expected to enter the TPC drift volume and distort the uniform electric field that guides the electrons to the readout pads. Analytical calculations were considered to correct for space-charge distortion fluctuations but they proved to be too slow for the calibration and reconstruction workflow in Run 3. In this paper, we discuss a novel strategy developed by the ALICE Collaboration to perform distortion-fluctuation corrections with machine learning and convolutional neural network techniques. The results of preliminary studies are shown and the prospects for further development and optimization are also discussed.


2020 ◽  
Vol 2 (1) ◽  
pp. 86
Author(s):  
Vinayak Pachkawade

This paper proposes a new readout method for a sensor to detect minute variations in the capacitance. A sensor is based on the weakly coupled electrical resonators that use an amplitude ratio (AR) as an output signal. A new readout scheme with a relatively higher output sensitivity is proposed to measure the relative changes in the input capacitor. A mathematical model is derived to express the readout output as a function of change in the capacitance. To validate the theoretical model, a system is modelled and designed using an industry-standard electronic circuit design environment. SPICE simulation results are presented for a wide range of design parameters, such as varying coupling factors between the two electrical resonators. Sensitivity comparison between the existing and the proposed AR readout is presented to show the effectiveness of the method of detection proposed in this work.


Sign in / Sign up

Export Citation Format

Share Document