cooling air
Recently Published Documents


TOTAL DOCUMENTS

879
(FIVE YEARS 161)

H-INDEX

29
(FIVE YEARS 2)

Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122239
Author(s):  
Yuqian Chen ◽  
Yuxin Fan ◽  
Qixiang Han ◽  
Xu Shan ◽  
Yaning Bi ◽  
...  

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Yijie Zhang ◽  
Juhong Jia ◽  
Ziyi Guo

AbstractA personal microclimate management system is designed to maintain thermal comfort which allows people to overcome a harsh environment. It consists of several micro-fans placed in the garment side seam to provide cooling air. The computational fluid dynamics method was used to simulate the three-dimensional model and analysis the influence of fan’s number and air gap distance. The obtained results depict that the introduced cool airflow will find its way along paths with flow resistance minimized and exhaust through several separated exit. The body heat flux is taken away at the same time. The convection effect is enhanced by the increase in the fans’ numbers, but the fans’ cooling effect varies a lot because of various air gap distances. When the air gap is small enough, the cooling air impact the body surface directly and causes fierce heat loss. While the air gap distance is large enough, the heat transfer along the skin surface could be enhanced by the eddy flow which is existed in the air gap between body and garment. These phenomena can maintain the body’s thermal comfort in a suitable range.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Xiang Li ◽  
Si Huang ◽  
Tubing Yin ◽  
Xibing Li ◽  
Kang Peng ◽  
...  

Thermal shock (TS) is known as the process where fractures are generated when rocks go through sudden temperature changes. In the field of deep rock engineering, the rock mass can be subjected to the TS process in various circumstances. To study the influence of TS on the mechanical behaviors of rock, sandstone specimens are heated at different high temperatures and three cooling methods (stove cooling, air cooling, and freezer cooling) are adopted to provide different cooling rates. The coupled dynamic and static loading tests are performed on the heated sandstone through a modified split Hopkinson pressure bar (SHPB) system. The influence of heating level and cooling rate on the dynamic compressive strength, energy dissipations, and fracturing characteristics is investigated based on the experimental data. The development of the microcracks of the sandstone specimens after the experiment is analyzed utilizing a scanning electron microscope (SEM). The extent of the development of the microcracks serves to explain the variation pattern of the mechanical responses and energy dissipations of the specimens obtained from the loading test. The findings of this study are valuable for practices in rock engineering involving high temperature and fast cooling.


2021 ◽  
Author(s):  
Rishabh Shrivastava ◽  
Nisha Tamar ◽  
Amit Grover ◽  
Debdulal Das

Abstract Accurate thermal prediction of gas turbine blades is essential to ensure successful operation throughout the design life. Large Gas turbines operate in different conditions based on customer requirements, due to which turbine blades are subjected to variations in thermal loading conditions. Simulating this behavior using conventional finite element modeling involves detailed and time-consuming analyses for calculation of blade temperature, which can be further utilized to assess cyclic and creep life. This paper deals with developing and utilizing machine learning based surrogate models to predict the sectional temperature (output) of a radially cooled blade. The surrogate models are developed to predict the output using turbine inlet temperature, hot gas mass flow, cooling air temperature and cooling air mass flow as input to the machine learning (ML) model. All thermal parameters for ML model have been obtained from CFD based 3D thermal calculations. A comparative study is presented between linear regression, decision tree, random forest, and gradient boost ML models, to select the model with the least mean absolute error. Additionally, hyperparameter optimization is performed using grid search to minimize the error. The results show that the linear regression-based model outputs the least mean absolute error of 6.5°C and the highest dependence of the output is on the turbine inlet temperature, followed by the cooling air temperature. The findings show a good agreement between the predicted output of the surrogate model and multi-dimensional physics based thermal calculations, while offering a considerate reduction in analysis time.


2021 ◽  
Author(s):  
Thanapat Chotroongruang ◽  
Prasert Prapamonthon ◽  
Rungsimun Thongdee ◽  
Thanapat Thongmuenwaiyathon ◽  
Zhenxu Sun ◽  
...  

Abstract Based on the Brayton cycle for gas-turbine engines, the high thermal efficiency and power output of a gas-turbine engine can be obtainable when the gas-turbine engine operates at high turbine inlet temperatures. However, turbine components e.g., inlet guide vane, rotor blade, and stator vane request high cooling performance. Typically, internal cooling and film cooling are two effective techniques that are widely used to protect high thermal loads for the turbine components in a state-of-the-art gas turbine. Consequently, the high thermal efficiency and power output can be obtained, and the turbine lifespan can be prolonged, also. On top of that, a comprehensive understanding of flow and heat transfer phenomena in the turbine components is very important. As a result, both experiments and simulations have been used to improve the cooling performance of the turbine components. In fact, the cooling air used in the internal cooling and film cooling is partially extracted from the compressor. Therefore, variations in the cooling air affect the cooling performance of the turbine components directly. This paper presents a numerical study on the influence of the cooling air on cooling-performance sensitivity of an internally convective turbine vane, MARK II using the computational fluid dynamics (CFD)/conjugate heat transfer (CHT) with the SST k-ω turbulence model. Result comparisons are conducted in terms of pressure, temperature, and cooling effectiveness under the effects of the inlet temperature, mass flow rate, turbulence intensity, and flow direction of the cooling air. The cooling-performance sensitivity to the coolant parameters is shown through variations of local cooling effectiveness, and area and volume-weighted average cooling effectiveness.


2021 ◽  
Vol 92 ◽  
pp. 108888
Author(s):  
Rahul Palulli ◽  
Davy Brouzet ◽  
Mohsen Talei ◽  
Robert Gordon

2021 ◽  
Vol 850 (1) ◽  
pp. 012018
Author(s):  
T Renugadevi ◽  
D Hari Prasanth ◽  
Appili Yaswanth ◽  
K Muthukumar ◽  
M Venkatesan

Abstract Data centers are large-scale data storage and processing systems. It is made up of a number of servers that must be capable of handling large amount of data. As a result, data centers generate a significant quantity of heat, which must be cooled and kept at an optimal temperature to avoid overheating. To address this problem, thermal analysis of the data center is carried out using numerical methods. The CFD model consists of a micro data center, where conjugate heat transfer effects are studied. A micro data center consists of servers aligned with air gaps alternatively and cooling air is passed between the air gaps to remove heat. In the present work, the design of data center rack is made in such a way that the cold air is in close proximity to servers. The temperature and airflow in the data center are estimated using the model. The air gap is optimally designed for the cooling unit. Temperature distribution of various load configurations is studied. The objective of the study is to find a favorable loading configuration of the micro data center for various loads and effectiveness of distribution of load among the servers.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012043
Author(s):  
Yi Li ◽  
Jianhua Wang ◽  
Xu Wang ◽  
Weilong Wu ◽  
Hang Su

Abstract The previous experiments of overall cooling performances were most conducted using simplified models and under the similar temperature ratio of mainstream to cooling air with real gas turbine operations, and ambient outlet pressure. To discuss the reliability of this type of experimental data, this paper exhibits two series of numerical simulations. Using a real E3 blade as model, which has two-pass rib-roughened channel with inclined film holes, numerical simulations are carried out at the same temperature ratio and pressure ratio, but different fluid temperatures including mainstream and cooling air, and different outlet pressure. The numerical results reveal two important conclusions: 1) At the same outlet pressure, the overall cooling effectiveness on PS is not sensitive to the fluid temperatures, but on SS in the region between two rows of film holes, a higher fluid temperature corresponds to a higher cooling effectiveness. 2) At the same pressure ratio of inlet to outlet, the overall cooling effectiveness on PS and SS is not sensitive to the outlet pressure and fluid temperature.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012053
Author(s):  
A S Gorshenin ◽  
J I Rakhimova ◽  
N P Krasnova

Abstract Casting aluminum to obtain semi-finished products - round ingots, due to uneven cooling in the mold, leads to various defects that affect further machining. To eliminate such defects, heat treatment is carried out - homogenization annealing. One of the homogenization important stages is the cooling of the ingots after heating at a rate that does not lead to the ingot quenching. The cooling medium is air. Knowing the conditions of heat exchange between the cooling air and the high-temperature aluminum billet makes it possible to obtain the ingot’s necessary physical and mechanical properties. The article describes the developed mathematical model of conjugate heat transfer during homogenization annealing of aluminum ingot. It allows analytically calculating the temperature of the ingots depending on the cooling time. To verify the data obtained by the mathematical model, the conjugate heat transfer in the ANSYS program was simulated.


Sign in / Sign up

Export Citation Format

Share Document