Human Transferrin
Recently Published Documents


TOTAL DOCUMENTS

499
(FIVE YEARS 45)

H-INDEX

51
(FIVE YEARS 9)

2021 ◽  
Vol 449 ◽  
pp. 214186
Author(s):  
André M.N. Silva ◽  
Tânia Moniz ◽  
Baltazar de Castro ◽  
Maria Rangel
Keyword(s):  

2021 ◽  
Vol 190 ◽  
pp. 660-666
Author(s):  
Anas Shamsi ◽  
Moyad Shahwan ◽  
Fahad A. Alhumaydhi ◽  
Ameen S.S. Alwashmi ◽  
Mohammad Abdullah Aljasir ◽  
...  

2021 ◽  
Vol 22 (16) ◽  
pp. 8923
Author(s):  
Nan Zhang ◽  
Tao Bing ◽  
Luyao Shen ◽  
Le Feng ◽  
Xiangjun Liu ◽  
...  

General cancer-targeted ligands that can deliver drugs to cells have been given considerable attention. In this paper, a high-affinity DNA aptamer (HG1) generally binding to human tumor cells was evolved by cell-SELEX, and was further optimized to have 35 deoxynucleotides (HG1-9). Aptamer HG1-9 could be taken up by live cells, and its target protein on a cell was identified to be human transferrin receptor (TfR). As a man-made ligand of TfR, aptamer HG1-9 was demonstrated to bind at the same site of human TfR as transferrin with comparable binding affinity, and was proved to cross the epithelium barrier through transferrin receptor-mediated transcytosis. These results suggest that aptamer HG1-9 holds potential as a promising ligand to develop general cancer-targeted diagnostics and therapeutics.


2021 ◽  
Author(s):  
Sol Ferrero ◽  
Maria D. Flores ◽  
Connor Short ◽  
Cecilia A. Vazquez ◽  
Lars E. Clark ◽  
...  

Pathogenic Clade B New World mammarenaviruses (NWM) can cause Argentine, Venezuelan, Brazilian, and Bolivian hemorrhagic fevers. Sequence variability among NWM glycoproteins (GP) poses a challenge to the development of broadly neutralizing therapeutics against the entire clade of viruses. However, blockade of their shared binding site on the apical domain of human Transferrin Receptor 1 (hTfR1/CD71) presents an opportunity for the development of effective and broadly neutralizing therapeutics. Here we demonstrate that the murine monoclonal antibody OKT9, which targets the apical domain of hTfR1, can sterically block cellular entry by viral particles presenting Clade B NWM glycoproteins (GP1-GP2). OKT9 blockade is also effective against viral particles pseudotyped with glycoproteins of a recently identified pathogenic Sabia-like virus. With nanomolar affinity for hTfR1, the OKT9 antigen binding fragment (OKT9-Fab) sterically blocks Clade B NWM-GP1s and reduces infectivity of an attenuated strain of Junin virus. Binding of OKT9 to the hTfR1 ectodomain in its soluble, dimeric state produces stable assemblies that are observable by negative stain electron microscopy. A model of the OKT9-sTfR1 complex, informed by the known crystallographic structure of sTfR1 and a newly determined structure of the OKT9 antigen binding fragment (Fab) suggests that OKT9 and the Machupo virus GP1 share a binding site on the hTfR1 apical domain. The structural basis for this interaction presents a framework for the design and development of high-affinity, broadly acting agents targeting Clade B NWMs. Importance Pathogenic Clade B NWMs cause grave infectious diseases: the South American hemorrhagic fevers. Their etiological agents are Junin (JUNV), Guanarito (GTOV), Sabiá (SABV), Machupo (MACV), Chapare (CHAV), and a new Sabiá-like (SABV-L) virus recently identified in Brazil. These are priority A pathogens due to their high infectivity and mortality, their potential of person-to-person transmission, and the limited availability of effective therapeutics and vaccines to curb their effects. While low homology between surface glycoproteins of NWMs foils efforts to develop broadly neutralizing therapies targeting NWMs, this work provides structural evidence that OKT9, a monoclonal antibody targeting a single NWM glycoprotein binding site on hTfR1, can efficiently prevent their entry into cells.


2021 ◽  
pp. 116227
Author(s):  
Mohd Shahnawaz Khan ◽  
Fohad Mabood Husain ◽  
Fahad A Alhumaydhi ◽  
Ameen SS Alwashmi ◽  
Md. Tabish Rehman ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Anas Shamsi ◽  
Saleha Anwar ◽  
Mohd Shahbaaz ◽  
Taj Mohammad ◽  
Mohamed F. Alajmi ◽  
...  

Rosmarinic acid (RA) is a natural compound that is gaining wide popularity owing to its broad-spectrum biological activities. RA is known for its wide range of medicinal properties and therapeutic applications in a vast range of neurodegenerative disorders thus making it a vital natural compound. Human transferrin (hTf) is a clinically significant protein that plays a pivotal role in maintaining iron homeostasis. The importance of studies pertaining to hTf is attributable to the pivotal role of iron deposition in CNS in neurodegenerative disorders. The study was intended to have an insight into the interaction between RA and hTf employing multispectroscopic approach, molecular docking, and molecular dynamic simulation studies. Fluorescence quenching studies revealed that RA shows an excellent binding affinity to hTf with a binding constant ( K ) of 107 M-1 and is guided by static mode of quenching. Isothermal titration calorimetry (ITC) further validated the spontaneous nature of binding. The estimation of enthalpy change (∆H) and entropy change (∆S) suggested that the RA-hTf complex formation is driven by hydrogen bonding, thereby making this process seemingly specific. Further, Fourier transform infrared (FTIR) and circular dichroism (CD) spectra suggested that RA induces conformational and structural changes in hTf. Additionally, molecular dynamics (MD) studies were carried out to investigate the stability of the hTf and hTf–RA system and suggested that binding of RA induces structural alteration in hTf with free hTf being more stable. This study provides a rationale to use RA in drug development against neurodegenerative disorders by designing novel functional foods containing RA.


Sign in / Sign up

Export Citation Format

Share Document