reaction processes
Recently Published Documents


TOTAL DOCUMENTS

723
(FIVE YEARS 127)

H-INDEX

40
(FIVE YEARS 6)

Author(s):  
qingjie wang ◽  
Sandrine Ricote ◽  
Yu Wang ◽  
Peter Vang Hendriksen ◽  
Jian-Qiang Wang ◽  
...  

Abstract In this study, a composite oxygen electrode is prepared by infiltrating a protonic-electronic conducting material, Ba0.5Gd0.8La0.7Co2O6−δ (BGLC) into a proton-conducting BaZr0.8Y0.2O3-δ (BZY20) backbone. The composite oxygen electrode is studied in a symmetrical cell configuration (BGLC-BZY20//BZY20//BGLC-BZY20). The electrode and cell performance are characterized via electrochemical impedance spectroscopy (EIS) with varying the operating conditions, including temperatures, oxygen, and steam partial pressures, with the purpose to identify and characterize the different electrochemical processes taking place in the oxygen electrode. Three electrode reaction processes are observed in the impedance spectra, which are tentatively assigned to i) diffusion of adsorbed oxygen/proton migration/hydroxyl formation, ii) oxygen reduction, and iii) charge transfer, going from the low- to high-frequency range. The BGLC-BZY20 electrode developed in this work shows a low polarization resistance of 0.22, 0.58, and 1.43 Ω cm2 per single electrode in 3 % humidified synthetic air (21% O2/79% N2) at 600, 550, and 500 °C, respectively. During long-term measurement, the cell shows no degradation in the first 350 hours but degrades afterward possibly due to insufficient material stability.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8262
Author(s):  
Yasunari Shinoda ◽  
Masakazu Takeuchi ◽  
Hikaru Mizukami ◽  
Norikazu Dezawa ◽  
Yasuhiro Komo ◽  
...  

A thin Pd-based H2-permeable membrane is required to produce high-purity H2 with high efficiency. In this study, a porous Ni-supported Pd60Cu40 composite H2-permeable membrane was developed using a reverse build-up method to produce economical H2 purification. The thickness of the Pd60Cu40 alloy layer produced by the improved membrane production process reached 1.0 μm; it was thinner than the layer obtained in a previous study (3.7 μm). The membrane was characterized by scanning electron microscope, inductively coupled plasma optical emission spectrometer, H2 permeation test, and Auger microprobe analysis. The permeation tests were performed at 300–320 °C and 50–100 kPa with H2 introduced from the primary side. The H2 permeation flux was stable up to ~320 °C. The n-value was determined to be 1.0. The H2 permeance of the membrane was 2.70 × 10−6 mol m−2 s−1 Pa−1.0 at 320 °C, after 30 h, similar to those of other 2.2-µm-thick and 3.7-µm-thick Pd60Cu40 composite membranes, suggesting that the adsorption and dissociation reaction processes on the PdCu alloy surface were rate-limiting. The Pd cost of the membrane was estimated to be ~1/30 of the Pd cost of the pure Pd60Cu40 membrane.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2971
Author(s):  
Jianyong Zhang ◽  
Hongchun Cui ◽  
Jinjin Xue ◽  
Wei Wang ◽  
Weiwei Wang ◽  
...  

The separation and preparation of theasinensins have been hot spots in the field of tea chemistry in recent years. However, information about the mechanism of efficient adsorption of tea theasinensins by resin has been limited. In this study, the adsorption equilibrium and thermodynamics of tea theasinensins by a high-efficiency macroporous adsorption HP20 resin were evaluated. The adsorption of theasinensin A, theasinensin B, and theasinensin C on HP20 resin were spontaneous physical reaction processes. Adsorption processes were exothermic processes, and lowering the temperature was beneficial to the adsorption. The Freundlich model was more suitable to describe the adsorption of tea theasinensins. The adsorption equilibrium constant and maximum adsorption capacity of theasinensin A were significantly higher than theasinensin B and theasinensin C, which indicated that the adsorption affinity of theasinensin A was stronger than that of theasinensin B and theasinensin C. The phenolic hydroxyl groups and intramolecular hydrogen bonds of theasinensin A were more than those of theasinensin B and theasinensin C, which might be the key to the resin’s higher adsorption capacity for theasinensin A. The HP20 resin was very suitable for efficient adsorption of theasinensin A.


2021 ◽  
pp. 339412
Author(s):  
Rongbin Li ◽  
Hongde Xia ◽  
Qian Huang ◽  
Peter Hedström ◽  
Wangzhong Mu ◽  
...  

2021 ◽  
Vol 943 (1) ◽  
pp. 012014
Author(s):  
Jingyin Liu ◽  
Zhijun Peng

Abstract As regulations for controlling VOCs (Volatile Organic Compounds) emissions have become more and more stringent, RTO (Regenerative Thermal Oxidizer) which involves heat exchange and storage, combustion and reaction processes has to be further optimised for enhancing the VOC treatment efficiency and reducing energy consumption. In this paper, influences of operating temperature distributions and internal flow fields on gas-out VOC concentration have been studied with experimental investigation and CFD numerical simulation. Experimental results shows that combustion temperature (around the combustor) plays more critical role than thermal storage bed temperature for affecting VOC flow-out concentration. By examining the internal flow and temperature distributions, modelling results demonstrate that fast heat transfer takes place in thermal ceramic beds and high temperature areas are formed around the combustor. At about 20 seconds after a bed working for gas-in flow, the heat transfer has demonstrated obvious attenuating. The research suggests that it is very challenging for simultaneously maintaining low gas-out VOC concentration and keeping low fuel consumption and low combustion temperature in RTOs.


Author(s):  
Shuwana Tasleem

Abstract: Reactive distillation processes are very promising in substituting Sconventional liquid phase reaction processes. However this technology is not suitable for all kind of processes or types of reaction. Therefore, assessing the feasibility of these process concepts forms an important area in current and future research and development activities. The present paper focuses on the feasibility studies based on the construction of residue curve maps for the toluene methylation system. The RCMs were constructed and analyzed; it is concluded that the process of synthesis of xylenes when carried out in the reactive distillation column enhances the selectivity of the desired para isomer. Keywords: Reactive Distillation, Residue Curve Maps, Feasibility Study, Toluene Methylation, Aspen Plus


2021 ◽  
Vol 25 (11) ◽  
pp. 5905-5915
Author(s):  
Yaniv Edery ◽  
Martin Stolar ◽  
Giovanni Porta ◽  
Alberto Guadagnini

Abstract. Our study investigates interplays between dissolution, precipitation, and transport processes taking place across randomly heterogeneous conductivity domains and the ensuing spatial distribution of preferential pathways. We do so by relying on a collection of computational analyses of reactive transport performed in two-dimensional systems where the (natural) logarithm of conductivity is characterized by various degrees of spatial heterogeneity. Our results document that precipitation and dissolution jointly take place in the system, with the latter mainly occurring along preferential flow paths associated with the conductivity field and the former being observed at locations close to and clearly separated from these. High conductivity values associated with the preferential flow paths tend to further increase in time, giving rise to a self-sustained feedback between transport and reaction processes. The clear separation between regions where dissolution or precipitation takes place is imprinted onto the sample distributions of conductivity which tend to become visibly left skewed with time (with the appearance of a bimodal behavior at some times). The link between conductivity changes and reaction-driven processes promotes the emergence of non-Fickian effective transport features. The latter can be captured through a continuous-time random-walk model where solute travel times are approximated with a truncated power law probability distribution. The parameters of such a model shift towards values associated with increasingly high non-Fickian effective transport behavior as time progresses.


2021 ◽  
Author(s):  
Grégory Potel Aguilar ◽  
Ricardo A. Broglia

This monograph presents a unified theory of nuclear structure and nuclear reactions in the language of quantum electrodynamics, Feynman diagrams. It describes how two-nucleon transfer reaction processes can be used as a quantitative tool to interpret experimental findings with the help of computer codes and nuclear field theory. Making use of Cooper pair transfer processes, the theory is applied to the study of pair correlations in both stable and unstable exotic nuclei. Special attention is given to unstable, exotic halo systems, which lie at the forefront of the nuclear physics research being carried out at major laboratories around the world. This volume is distinctive in dealing in both nuclear structure and reactions and benefits from comparing the nuclear field theory with experimental observables, making it a valuable resource for incoming and experienced researchers who are working in nuclear pairing and using transfer reactions to probe them.


Sign in / Sign up

Export Citation Format

Share Document