drought stress tolerance
Recently Published Documents


TOTAL DOCUMENTS

381
(FIVE YEARS 160)

H-INDEX

45
(FIVE YEARS 10)

2022 ◽  
Vol 13 (SPL) ◽  
Author(s):  
Arpit Gaur ◽  
Deepti Sharma ◽  
Sonia Sheoran ◽  
Sulekha Chahal ◽  
Kaveri Chaudhary ◽  
...  

2022 ◽  
pp. 135-169
Author(s):  
Jayant H. Meshram ◽  
Suman Bala Singh ◽  
K.P. Raghavendra ◽  
V.N. Waghmare

2021 ◽  
Vol 12 ◽  
Author(s):  
Jiangna Liu ◽  
Teame Gereziher Mehari Mehari ◽  
Yanchao Xu ◽  
Muhammud Jaward Umer ◽  
Yuqing Hou ◽  
...  

Drought and low-temperature stresses are the most prominent abiotic stresses affecting cotton. Wild cotton being exposed to harsh environments has more potential to cope with both biotic and abiotic stresses. Exploiting wild cotton material to induce resistant germplasm would be of greater interest. The candidate gene was identified in the BC2F2 population among Gossypium tomentosum and Gossypium hirsutum as wild male donor parent noted for its drought tolerance and the recurrent parent and a high yielding but drought susceptible species by genotyping by sequencing (GBS) mapping. Golden2-like (GLK) gene, which belongs to the GARP family, is a kind of plant-specific transcription factor (TF) that was silenced by virus-induced gene silencing (VIGS). Silencing of GhGLK1 in cotton results in more damage to plants under drought and cold stress as compared with wild type (WT). The overexpression of GhGLK1 in Arabidopsis thaliana showed that the overexpressing plants showed more adaptability than the WT after drought and cold treatments. The results of trypan blue and 3,3′-diaminobenzidine (DAB) staining showed that after drought and cold treatment, the leaf damage in GhGLK1 overexpressed plants was less as compared with the WT, and the ion permeability was also lower. This study suggested that the GhGLK1 gene may be involved in the regulation of drought and cold stress response in cotton. Our current research findings add significantly to the existing knowledge of cold and drought stress tolerance in cotton.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiu-Qing Jing ◽  
Wen-Qiang Li ◽  
Meng-Ru Zhou ◽  
Peng-Tao Shi ◽  
Ran Zhang ◽  
...  

AbstractCarbohydrate-binding malectin/malectin-like domain-containing proteins (CBMs) are a recently identified protein subfamily of lectins that participates various functional bioprocesses in the animal, bacterial, and plant kingdoms. However, little is known the roles of CBMs in rice development and stress response. In this study, OsCBM1, which encodes a protein containing only one malectin-like domain, was cloned and characterized. OsCBM1 is localized in both the endoplasmic reticulum and plasma membrane. Its transcripts are dominantly expressed in leaves and could be significantly stimulated by a number of phytohormone applications and abiotic stress treatments. Overexpression of OsCBM1 increased drought tolerance and reactive oxygen species production in rice, whereas the knockdown of the gene decreased them. OsCBM1 physically interacts with OsRbohA, a NADPH oxidase, and the expression of OsCBM1 in osrbohA, an OsRbohA-knockout mutant, is significantly downregulated under both normal growth and drought stress conditions. Meanwhile, OsCBM1 can also physically interacts with OsRacGEF1, a specific guanine nucleotide exchange factor for the Rop/Rac GTPase OsRac1, and transient coexpression of OsCBM1 with OaRacGEF1 significantly enhanced ROS production. Further transcriptome analysis showed that multiple signaling regulatory mechanisms are involved in the OsCBM1-mediated processes. All these results suggest that OsCBM1 participates in NADPH oxidase-mediated ROS production by interacting with OsRbohA and OsRacGEF1, contributing to drought stress tolerance of rice. Multiple signaling pathways are likely involved in the OsCBM1-mediated stress tolerance in rice.


Sign in / Sign up

Export Citation Format

Share Document