southeastern tibetan plateau
Recently Published Documents


TOTAL DOCUMENTS

301
(FIVE YEARS 118)

H-INDEX

32
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Xiaoyu Chen ◽  
Junlai Liu ◽  
et al.

S1: Analytical Methods; Table S1: Summary of Mineral assemblages, microstructures and temperature data; Table S2: Zircon U-Pb LA-ICP-MS data of the granitic rocks from the Chong Shan structural belt.


2022 ◽  
Author(s):  
Xiaoyu Chen ◽  
Junlai Liu ◽  
et al.

S1: Analytical Methods; Table S1: Summary of Mineral assemblages, microstructures and temperature data; Table S2: Zircon U-Pb LA-ICP-MS data of the granitic rocks from the Chong Shan structural belt.


Abstract Near-surface air temperature variability and the reliability of temperature extrapolation within glacierized regions are important issues for hydrological and glaciological studies that remain elusive because of the scarcity of high-elevation observations. Based on air temperature data in 2019 collected from 12 automatic weather stations, 43 temperature loggers and 6 national meteorological stations in six different catchments, this study presents air temperature variability in different glacierized/nonglacierized regions and assesses the robustness of different temperature extrapolations to reduce errors in melt estimation. The results show high spatial variability in temperature lapse rates (LRs) in different climatic contexts, with the steepest LRs located on the cold-dry northwestern Tibetan Plateau and the lowest LRs located on the warm-humid monsoonal-influenced southeastern Tibetan Plateau. Near-surface air temperatures in high-elevation glacierized regions of the western and central Tibetan Plateau are less influenced by katabatic winds and thus can be linearly extrapolated from off-glacier records. In contrast, the local katabatic winds prevailing on the temperate glaciers of the southeastern Tibetan Plateau exert pronounced cooling effects on the ambient air temperature, and thus, on-glacier air temperatures are significantly lower than that in elevation-equivalent nonglacierized regions. Consequently, linear temperature extrapolation from low-elevation nonglacierized stations may lead to as much as 40% overestimation of positive degree days, particularly with respect to large glaciers with a long flowline distances and significant cooling effects. These findings provide noteworthy evidence that the different LRs and relevant cooling effects on high-elevation glaciers under distinct climatic regimes should be carefully accounted for when estimating glacier melting on the Tibetan Plateau.


2021 ◽  
pp. 1-15
Author(s):  
Yin Fu ◽  
Qiao Liu ◽  
Guoxiang Liu ◽  
Bo Zhang ◽  
Rui Zhang ◽  
...  

Abstract Most glaciers on the Tibetan Plateau have experienced continuous mass losses in response to global warming. However, the seasonal dynamics of glaciers on the southeastern Tibetan Plateau have rarely been reported in terms of glacier surface elevation and velocity. This paper presents a first attempt to explore the seasonal dynamics of the debris-covered Dagongba Glacier within the southeastern Tibetan Plateau. We use the multitemporal unoccupied aerial vehicle images collected over the lower ablation zone on 8 June and 17 October 2018, and 13 May 2019, and then perform an analysis concerning climatic fluctuations. The results reveal that the mean surface elevation decrease of the Dagongba Glacier during the warm season ( $2.81\pm 0.44$ m) was remarkably higher than the cold season ( $0.72\pm 0.45$ m). Particularly notable glacier surface elevation changes were found around supraglacial lakes and ice cliffs where ice ablation rates were $\sim$ 3 times higher than the average. In addition, a larger longitudinal decline of glacier surface velocity was observed in the warm season than that in the cold season. In terms of further comparative analysis, the Dagongba Glacier experienced a decrease in surface velocity between 1982–83 and 2018–19, with a decrease in the warm season possibly twice as large as that in the cold season.


2021 ◽  
Vol 17 (6) ◽  
pp. 2381-2392
Author(s):  
Maierdang Keyimu ◽  
Zongshan Li ◽  
Bojie Fu ◽  
Guohua Liu ◽  
Fanjiang Zeng ◽  
...  

Abstract. Trees record climatic conditions during their growth, and tree rings serve as proxy to reveal the features of the historical climate of a region. In this study, we collected tree-ring cores of hemlock forest (Tsuga forrestii) from the northwestern Yunnan area of the southeastern Tibetan Plateau (SETP) and created a residual tree-ring width (TRW) chronology. An analysis of the relationship between tree growth and climate revealed that precipitation during the non-growing season (NGS) (from November of the previous year to February of the current year) was the most important constraining factor on the radial tree growth of hemlock forests in this region. In addition, the influence of NGS precipitation on radial tree growth was relatively uniform over time (1956–2005). Accordingly, we reconstructed the NGS precipitation over the period spanning from 1600–2005. The reconstruction accounted for 28.5 % of the actual variance during the common period of 1956–2005. Based on the reconstruction, NGS was extremely dry during the years 1656, 1694, 1703, 1736, 1897, 1907, 1943, 1982 and 1999. In contrast, the NGS was extremely wet during the years 1627, 1638, 1654, 1832, 1834–1835 and 1992. Similar variations of the NGS precipitation reconstruction series and Palmer Drought Severity Index (PDSI) reconstructions of early growing season from surrounding regions indicated the reliability of the present reconstruction. A comparison of the reconstruction with Climate Research Unit (CRU) gridded data revealed that our reconstruction was representative of the NGS precipitation variability of a large region in the SETP. Our study provides the first historical NGS precipitation reconstruction in the SETP which enriches the understanding of the long-term climate variability of this region. The NGS precipitation showed slightly increasing trend during the last decade which might accelerate regional hemlock forest growth.


Sign in / Sign up

Export Citation Format

Share Document