radar observations
Recently Published Documents


TOTAL DOCUMENTS

1653
(FIVE YEARS 233)

H-INDEX

72
(FIVE YEARS 6)

MAUSAM ◽  
2022 ◽  
Vol 53 (3) ◽  
pp. 271-280
Author(s):  
G. C. BASU ◽  
D. K. MONDAL

Severe thunderstorms accompanied by squalls are the most hazardous weather phenomena during pre-monsoon season in north-eastern region of India. An attempt has been made in this paper to study some parameters for forecasting thundersqualls over Calcutta (Airport) during pre-monsoon season. Parameterisation of thermodynamic components alongwith the synoptic support during thundersqualls over Calcutta has been discussed here. A forecasting aspect for propagation speed of thunderstorm cell at Calcutta in pre-monsoon season has been examined with respect to radar-echo positions, mid-level winds and convective available potential energy (CAPE). Occurrences of multiple thundersqualls over Calcutta Airport within a few hours’ interval have been discussed and examined through hodograph analysis, radar observations and synoptic situations.


Author(s):  
Frédéric Fabry

Abstract In the ensemble Kalman filter (EnKF), the covariance localization radius is usually small when assimilating radar observations because of high density of the radar observations. This makes the region away from precipitation difficult to correct if no other observations are available, as there is no reason to correct the background. To correct errors away from the innovating radar observations, a multiscale localization (MLoc) method adapted to dense observations like those from radar is proposed. In this method, different scales are corrected successively by using the same reflectivity observations, but with different degree of smoothing and localization radius at each step. In the context of observing system simulation experiments, single and multiple assimilation experiments are conducted with the MLoc method. Results show that the MLoc assimilation updates areas that are away from the innovative observations and improves on average the analysis and forecast quality in single cycle and cycling assimilation experiments. The forecast gains are maintained until the end of the forecast period, illustrating the benefits of correcting different scales.


2021 ◽  
Author(s):  
Kanykei Kandieva ◽  
Christoph Jacobi ◽  
Khalil Karami ◽  
Alexander Pogoreltsev ◽  
Evgeny Merzlyakov ◽  
...  

<p class="western" align="left">Radar observations from two SKiYMET radars at Collm (51°N, 13°E) and Kazan (56°N, 49°E) during 2016-2017 are used to investigate the longitudinal variability of the mesosphere/lower thermosphere (MLT) wind regime over western and eastern Europe. Both of the meteor radars have similar setups and apply the same analysis procedures to correctly compare MLT parameters and validate the simulated winds. The radar observations confirm the established seasonal variability of the wind distribution, but this distribution is not identical for the two stations. The results show good qualitative agreement with global circulations model predictions by the Middle and Upper Atmosphere Model (MUAM) and the Upper Atmosphere ICOsahedral Non-hydrostatic model (UA-ICON). The MUAM and UA-ICON models well reproduce the main dynamical features, namely the vertical and temporal distributions of the winds observed throughout the year. However, there are also some differences in the longitudinal wind variability of the models and radar observations. Numerical experiments with modified parameterization settings have also been carried out to study the response of the MLT wind circulation to the gravity waves originating from the lower atmosphere. The MUAM model results show that a decrease/increase in the gravity wave intensity at the lower atmosphere leads to an increase/decrease of the mesospheric zonal wind jet extension and the zonal wind reversal.</p>


2021 ◽  
Author(s):  
Gunter Stober ◽  
Alexander Kozlovsky ◽  
Alan Liu ◽  
Zishun Qiao ◽  
Masaki Tsutsumi ◽  
...  

<p>The middle atmospheric circulation is driven by atmospheric waves, which carry energy and momentum from their source to the area of their dissipation and thus providing an energetic coupling between different atmospheric layers. A comprehensive understanding of the wave-wave or wave-mean flow interactions often requires a spatial characterization of these waves. Multistatic meteor radar observations provide an opportunity to investigate the spatial and temporal variability of mesospheric/lower thermospheric winds on regional scales. We apply the 3DVAR+div retrievals to observations from the Nordic Meteor Radar Cluster and the Chilean Observation Network De Meteor Radars (CONDOR). Here we present preliminary results of a new 3DVAR+div retrieval to infer the vertical wind variability using spatially resolved observations. The new retrieval includes the continuity equation in the forward model to ensure physical consistency in the vertical winds. Our preliminary results indicate that the vertical wind variability is about +/-2m/s. The 3DVAR+div algorithm provides spatially resolved winds resolves body forces of breaking gravity waves, which are typically indicated by two counterrotating vortices. Furthermore, we infer horizontal wavelength spectra for all 3 wind components to obtain spectral slopes indicating a transition of the vertical to the divergent mode at scales of about 80-120 km at the mesosphere.</p>


MAUSAM ◽  
2021 ◽  
Vol 48 (2) ◽  
pp. 169-188
Author(s):  
S. RAGHAVAN

ABSTRACT. A review is presented of the radar observation of tropical cyclones in the Indian seas. The use of radar in operational cyclone tracking and forecasting as well as the knowledge gained from radar observations of the structure, wind and rainfall distribution and motion of cyclones are discussed. In the context of the expected introduction of operational Doppler ra1ars in India, the future prospects in the use of radar for operations and research are outlined. Some important areas where our understanding of cyclones can be improved by studies with radar in conjunction with other observations are listed.    


2021 ◽  
Author(s):  
Riley McGlasson ◽  
Ali Bramson ◽  
Gareth Morgan ◽  
Michael Sori
Keyword(s):  

MAUSAM ◽  
2021 ◽  
Vol 62 (3) ◽  
pp. 433-440
Author(s):  
HARI SINGH ◽  
R. K. DATTA ◽  
SURESH CHAND ◽  
D.P. MISHRA ◽  
B.A.M. KANNAN

Hailstorm of 19th April 2010 over Delhi has been studied using observations from Doppler Weather Radar (DWR) installed at Palam. The data was analysed at Central Server located at India Meteorological Department HQ using IRIS software (of M/s SIGMET-VAISALA, Finland) installed in the server. Reflectivity of 45 dBZ level was found to be 6.3 km above freezing level at the time of hailstorm which corresponds to 100% (obtained from probability function diagram of Witt et al. (1998)) probability of hail. Reflectivity was more than 55 dBZ upto 10 km and 7 km at 1110 UTC and 1120 UTC respectively which exceeds the hail threshold limit adopted in NEXRAD (USA). Maximum of 62 dBZ was observed at about 3 km at 1110 UTC and 64 dBZ at 3.5 km at 1120 UTC in Radar Data. Very high values of Vertical Integrated Liquid (VIL) ranging from 58.7 kg/m2 to 64.1 kg/m2 were observed between 1040 UTC and 1120 UTC which is higher than 43 kg/m2, the threshold value for occurrence of hail. Severe Hail Index (SHI), Probability of Severe Hail (POSH) and Maximum Expected Hail Size (MEHS) were computed to verify the applicability of enhancedHail Detection Algorithm (HDA) outlined by Witt et al. (1998) to Indian conditions. The Maximum Expected Hail Size (MEHS) computed using Doppler Weather Radar observations were 2.5 cm, 2.6 cm and 2.0 cm respectively at 1050 UTC, 1100 UTC and 1110 UTC which are in close agreement with the reported hail size. The study confirms that HDA and other thresholds of reflectivity and VIL used for hail detection and warnings in NEXRAD (USA) can be used in Indian conditions also.


2021 ◽  
Author(s):  
Neil P. Hindley ◽  
Neil Cobbett ◽  
David C. Fritts ◽  
Diego Janchez ◽  
Nicholas J. Mitchell ◽  
...  

Abstract. The mesosphere and lower thermosphere (MLT) is a dynamic layer of the earth’s atmosphere. This region marks the interface at which neutral atmosphere dynamics begin to influence the ionosphere and space weather. However, our understanding of this region and our ability to accurately simulate it in global circulation models (GCMs) is limited by a lack of observations, especially in remote locations. To this end, a meteor radar was deployed on the remote mountainous island of South Georgia (54° S, 36° W) in the Southern Ocean from 2016 to 2020. The goal of this study is to use these new measurements to characterise the fundamental dynamics of the MLT above South Georgia including large-scale winds, solar tides, planetary waves (PWs) and mesoscale gravity waves (GWs). We first present an improved method for time-height localisation of radar wind measurements and characterise the large-scale MLT winds. We then explore the amplitudes and phases of the diurnal (24 h), semidiurnal (12 h) and terdiurnal (8 h) solar tides at this latitude. We also explore PW activity and find very large amplitudes up to 30 ms−1 for the quasi-2 day wave in summer and show that the dominant modes of the quasi-5, 10 and 16 day waves are westward W1 and W2. We investigate wind variance due to GWs in the MLT and use a new method to show an east-west tendency of GW variance of up to 20 % during summer and a weaker north-south tendency of 0–5 % during winter. This is contrary to the expected tendency of GW directions in the winter stratosphere below, which is a strong suggestion of secondary GW (2GW) observations in the MLT. Lastly, comparison of radar winds to a climatological Whole Atmosphere Community Climate Model (WACCM) simulation reveals a simulated summertime mesopause and zonal wind shear that occur at altitudes around 10 km lower than observed, and southward winds during winter above 90 km altitude in the model that are not seen in observations. Further, wintertime zonal winds above 85 km altitude are eastward in radar observations but in WACCM they are found to weaken and reverse to westward. Recent studies have linked this discrepancy to the impact of 2GWs on the residual circulation which are not included in WACCM. These measurements therefore provide vital constraints that can guide the development of GCMs as they extend upwards into this important region of the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document