nutrient foramen
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 39)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Kiyoshi Ito ◽  
Takuya Nakamura ◽  
Yoshiki Hanaoka ◽  
Naoki Ogiwara ◽  
Tetsuyoshi Horiuchi

2021 ◽  
Vol 10 (41) ◽  
pp. 3566-3570
Author(s):  
Sukriye Deniz Mutluay ◽  
Ahmet Kursad Acıkgoz ◽  
Memduha Gulhal Bozkır

BACKGROUND Nutrient foramen is a large opening that transfers the arteries that supply the bone to the bone cavity. During surgical procedures, it is very important to have precise and complete information about the location of the foramina to determine whether the fracture line passes close to the nutrient foramina. The purpose of this study was to determine the number and position of the femoral nutrient foramina together with morphometric measurements. METHODS A total of 93 dry adult femurs with unknown sexes were examined in this study. The direction, location and the total number of nutrient foramina of the femur were investigated by using an anthropometer (Lafayette instrument, Indiana). Also, foraminal index was calculated. RESULTS The analysis revealed that 28 (53.8 %) of the femurs with a single nutrient foramen were on the right side and 22 (53.7 %) were on the left side, respectively. Femurs with double nutrient foramina were 23 (44.2 %) and 18 (43.9 %) on right and left sides, respectively. Femurs with triple nutrient foramina were 1(1.9 %) and 1 (2.4 %) on right and left sides, respectively. The foraminal index of femurs was found as (41, 58 %) and (42, 23 %) on the right and left sides, respectively. The nutrient foramen was mostly 84 (90.3 %) located at the middle third of the femur. CONCLUSIONS The findings of this study provide information and details about nutrient foramen which have clinical importance, especially in surgical procedures like bone grafting and microsurgical vascularized bone transplantation. KEY WORDS Femur, Foraminal Index, Nutrient Artery, Nutrient Foramina


Author(s):  
Rajesh K. Kushwaha ◽  
Rajiv Ranjan ◽  
Makardhawaj Prasad

Background: Nutrient foramen gives passage to the nutrient vessels which supply major portion of the bone even bone marrow. Many vascular foramina are present in all bones for the passage of blood vessels. In long bones many small vascular foramina are present at the ends through which epiphyseal and metaphyseal blood vessels passes. In the shaft of long bones one or two larger foramina are present through which nutrient vessels passes. Nutrient artery provides 70% to 80% blood supply of long bones in children and if blood supply is decreased, it may lead to ischemia of bone resulting into less vascularisation of metaphysis and growth plate. Thus precise topographical knowledge of nutrient foramen is necessary for the surgeons to save the nutrient vessels during surgical procedures i.e. fracture fixation, bone grafting etc. Damage to the nutrient artery causes avascular necrosis of bone.Methods: Total 70 dry bones of tibia were taken in the study, without knowledge of sex of the bone. Position, number and direction of the nutrient foramen were noted.Results: single nutrient foramina present in 91.43% of cases and double in 6% of cases. 97.14 % nutrient foramina are directed downward and 2.86% directed upward. 90% nutrient foramina present on posterior surface, 1.42% on lateral surface and 8.57% on lateral border. 75% of nutrient foramina present in upper 1/3 and 25% in middle 1/3. Primary nutrient foramina (>24 G) present in 89.47% and secondary nutrient foramina (<24 G) present in 10.53% of cases.Conclusions: A sound knowledge of nutrient foramen topography, prevent the injuries of vasculature of bone during surgeries.


Author(s):  
Samyog Mahat ◽  
Shamsher Shrestha ◽  
Prabhakar Yadav

Background: Nutrient artery gain access through nutrient foramen and provide vascular supply to bone. Number, size and location of nutrient foramen has significant medical as well as surgical importance. Any insult to nutrient artery during surgical procedure or during trauma may lead to devascualarization or poor prognosis.Methods: The present study consist of 50 femurs, 50 tibia and 50 fibula, collected from department of anatomy, BPKIHS. Mean length of bone, number, position and size and foraminal index of nutrient foramen was observed and recorded accordingly.Results: In femur 62% bone shows single nutrient foramen. Nutrient foramen was commonly located in medial lip of linea aspera and in upper third of bone which was noted in 80% of bone. In tibia 82% of total bone shows single foramen with absent of foramen in 6% bone. Foramen was commonly located above the soleal line and middle third of bone which was noted in 56% of bone. In fibula 6% of total bone shows absent of nutrient foramen and majority of bone shows single nutrient foramen (82%). Foramen was commonly located in lower part of posterior surface (60%) and in middle third of bone.Conclusions: This study provides details topographic knowledge about nutrient foramen which is important clinically for proper planning of surgery and its outcome.


Author(s):  
Qiaohui Hu ◽  
Thomas J. Nelson ◽  
Roger S. Seymour

The metabolic rate of vertebrate bone tissue is related to bone growth, repair and homeostasis, which are all dependent on life stage. Bone metabolic rate is difficult to measure directly, but absolute blood flow rate (Q̇) should reflect local tissue oxygen requirements. A recent ‘foramen technique’ has derived an index of blood flow rate (Qi) by measuring nutrient foramen sizes of long bones. Qi is assumed to be proportional to Q̇, however, the assumption has never been tested. This study used fluorescent microsphere infusion to measure femoral bone Q̇ in anaesthetised non-laying hens, laying hens and roosters. Mean cardiac output was 338±38 ml min−1 kg−1, and the two femora received 0.63±0.10 % of this. Laying hens had higher wet bone mass-specific Q̇ to femora (0.23±0.09 ml min−1 g−1) than the non-laying hens (0.12±0.06 ml min−1 g−1) and roosters (0.14±0.04 ml min−1 g−1), presumably associated with higher bone calcium mobilization during eggshell production. Estimated metabolic rate of femoral bone was 0.019 ml O2 min−1 g−1. Femoral Q̇ increased significantly with body mass, but was not correlated with nutrient foramen radius (r), probably due to a narrow range in foramen radius. Over all 18 chickens, femoral shaft Q̇/r was 1.07±0.30 ml min−1 mm−1. Mean Qi in chickens was significantly higher than predicted by an allometric relationship for adult cursorial bird species, possibly because the birds were still growing.


2021 ◽  
Vol 10 (28) ◽  
pp. 2099-2103
Author(s):  
Harsha Atul Keche ◽  
Preeti Prabhakar Thute ◽  
Darshna Gulabrao Fulmali ◽  
Atul Shankarrao Keche

BACKGROUND The clavicle or collar bone is a modified long bone. It is the first bone to ossify in the membrane. The inferior surface of shaft of clavicle presents a subclavian groove. A nutrient foramen lies at the lateral end of the groove. The nutrient artery is derived from the supraclavicular or clavicular branch of thoracoacromial artery. A bone is supplied by a nutrient artery which passes through the small tunnel called as nutrient foramina. In orthopaedic procedures to preserve the circulation, the topographical knowledge of the nutrient foramen is important. The study was undertaken to analyse nutrient foramina in adult human clavicles in relation to their number, position, direction, and distribution over bone length. METHODS Our study consisted of 67 adult dry human clavicles (31 right sides and 36 left sides). The number, topography and direction of the foramina were studied. The distance of foramina from the sternal end & total length of the clavicles were measured in millimetres by using digital Vernier calipers. The foramen index was calculated by applying the Hughes formula: FI = (DNF TL) x 100. RESULTS Nutrient foramina were present in all the clavicles. Most of the clavicles have single nutrient foramen. We observed 62 (68.13 %) foramina on the posterior surface mostly in the middle 1 / 3rd region. All the nutrient foramina were directed towards acromial end and the foramina index (FI) was 50.2. CONCLUSIONS The topographical knowledge of the nutrient foramen is important in orthopaedic procedures like nail plating, K wire fixation, reduction, internal fixation devices for the treatment of fracture, coracoclavicular ligament repair and in free vascularized bone graft to preserve the circulation. KEY WORDS Clavicle, Nutrient Foramina, Nutrient Artery, Foramina Index (FI)


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Keyang Zhao ◽  
Fangfang Zhang ◽  
Kun Quan ◽  
Bin Zhu ◽  
Guangyi Li ◽  
...  

Abstract Background A defective nutrient foramen in the fovea capitis femoris was hypothesized to reflect the blood circulation pattern of the femoral head, leading to insufficient blood supply and causing osteonecrosis of the femoral head. Methods Normal and necrotic femoral head specimens were collected. The necrotic femoral head group was divided into a non-traumatic and traumatic subgroup. 3D scanning was applied to read the number, the diameter, and the total cross-sectional area of the nutrient foramina in the fovea capitis femoris. Chi-squared tests and independent t-tests were used to detect any differences in the categorical and continuous demographic variables. Logistic regression models were used to estimate the odds ratio (OR) for non-traumatic and traumatic osteonecrosis in different characteristic comparisons. Results A total of 249 femoral head specimens were collected, including 100 normal femoral heads and 149 necrotic femoral heads. The necrotic femoral head group revealed a significantly higher percentage of no nutrient foramen (p < 0.001), a smaller total area of nutrient foramina (p < 0.001), a smaller mean area of nutrient foramina (p = 0.014), a lower maximum diameter of the nutrient foramen (p < 0.001), and a lower minimum diameter of the nutrient foramen (p < 0.001) than the normal femoral head group. The logistic regression model demonstrated an increasing number of nutrient foramina (crude OR, 0.51; p < 0.001), a larger total area of nutrient foramina (crude OR, 0.58; p < 0.001), a larger mean area of nutrient foramina (crude OR, 0.52; p = 0.023), a greater maximum diameter of the nutrient foramen (crude OR, 0.26; p < 0.001), and greater minimum diameter of the nutrient foramen (crude OR, 0.20; p < 0.001) significantly associated with reduced odds of osteonecrosis of the femoral head (ONFH). The necrotic femoral head group was further divided into 118 non-traumatic and 31 traumatic necrotic subgroups, and no significant difference was observed in any characteristics between them. Conclusions Characteristics of the nutrient foramen in the fovea capitis femoris showed a significant defect of necrotic than normal femoral heads, and significantly reduced odds were associated with the higher abundance of the nutrient foramen in ONFH. Therefore, the condition of the nutrient foramen might be the indicator of ONFH.


2021 ◽  
Vol 10 (23) ◽  
pp. 1772-1776
Author(s):  
Govula Subramanyam ◽  
Kategari Chittinarasamma ◽  
Chaluvadi Jayamma ◽  
Somasekhar R.

BACKGROUND Nutrient foramen of humerus is an opening in the shaft of humerus which conducts nutrient vessels for medullary cavity. Major source of blood supply to long bone is the nutrient artery. Knowledge regarding nutrient foramen is important for orthopaedic surgeons while doing any procedure on humerus like bone grafting, plating and also plays an important role in fracture healing. We wanted to determine the location, number, and direction of nutrient foramen of humerus. METHODS The observational study was conducted on 72 adult humeri (36 of right side and 36 of left side) collected from Department of Anatomy, Kurnool Medical College, Kurnool, Andhra Pradesh from 15th September to 31st October 2020. Each humerus was observed for location, number, and direction of nutrient foramen in relation with surface, border andzone. RESULTS In the present study it has been observed that 61 % of humeri had a single foramen, 31 % had two foramina and 8 % had 3 foramina. Majority of nutrient foramina (54.95 %) were present on antero-medial surface, 12.08 % on anterolateral surface, 12.08 % on posterior surface, 19.78 % on medial border, and 1.09 % on lateral border. It was also concluded that most (94.50 %) of the foramina were present in the zone II followed by zone III (3.30 %) then by zone I (2.19 %). CONCLUSIONS Knowledge of number and location of the nutrient foramina in humerus will be helpful in preventing intra-operative injury of nutrient artery during orthopaedic, plastic and reconstructive surgery; and will also be relevant in medico legal practice. KEY WORDS Nutrient Foramen, Humerus, Nutrient Artery, Foraminal Index, Clinical Implications


2021 ◽  
Vol 10 (14) ◽  
pp. 999-1002
Author(s):  
Suja R.S. ◽  
Mini Alikunju ◽  
Aswathy Maria Oommen ◽  
Sreekumar R ◽  
Sheena Kalyani Sukumaran ◽  
...  

BACKGROUND Nutrient foramina are seen in the shaft of long bones. They vary in number, size and their position on the surface of bones. It transmits the nutrient artery which is the main source of blood supply to the long bones. We intend to study the location, number, type and direction of primary nutrient foramina (PNF) on the shaft of tibia. METHODS The descriptive study was done using 120 tibiae (right-66, left-54) from Department of Anatomy, Govt. Medical College, Thiruvananthapuram. Length of each bone and distance of the nutrient foramen from the upper end of tibia was measured using osteometric board. The location of the primary nutrient foramina on the surface of tibia, the direction of the nutrient canal and the presence of secondary nutrient foramina were noted. RESULTS Single primary nutrient foramina were located on the posterior surface of 113 tibiae. 4 tibiae showed PNF and secondary nutrient foramina (SNF). No nutrient foramina were observed in 3 tibiae. CONCLUSIONS The precise knowledge and topography of PNF of tibia will help orthopaedic surgeons in minimising damage to vasculature of tibia during various surgical procedures. KEY WORDS Tibia, Nutrient Foramen, Nutrient Artery


Sign in / Sign up

Export Citation Format

Share Document