mine roadways
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 33)

H-INDEX

12
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 133
Author(s):  
Sławomir Bartoszek ◽  
Grzegorz Ćwikła ◽  
Gabriel Kost ◽  
Krzysztof Nieśpiałowski

The article presents tests on the possibility of using ultrasonic transducers for accurate distance measurement in hard coal mines. In order to check the impact of selected disturbing factors on the measurement results, test stands were built, and then a full cycle of measurements with the use of different transducers (AR30 and AR41), which were selected and pre-tested in previous research projects, was realized. The impact of such disturbing factors as airborne dust (coal, stone, lime and mixed dust), changes in temperature and humidity on the propagation of ultrasonic waves, amplitude and measurement accuracy was investigated. The tests were preceded by theoretical analysis. It was found that the transducers selected for the tests had a sufficient accuracy and range, so they can be used in the devices planned to be designed, allowing for the determining of the location of a roadheader in hard coal mine roadways, taking into account technical and legal restrictions. It was also specified which disturbing factors should be compensated and what methods and parameters of this compensation should be used.


2021 ◽  
Vol 15 ◽  
Author(s):  
Zhan Cao ◽  
Daolong Yang ◽  
Xiaolei Ma ◽  
Yanxiang Wang ◽  
Songquan Wang ◽  
...  

Background: Concrete pavers are self-propelled units used in concrete pavement construction that have of paving, vibrating, and leveling functions. The existing concrete pavers have a large size, making it difficult for them to enter underground roadways, and it is difficult to adjust the paving equipment in real time when the width of the underground roadway is deformed. Objective: To realize intelligent concrete paving in coal mine roadways, based on the analysis of recent concrete paver patents, this paper proposes an intelligent virtual paving system based on 3D infrared scanning imaging. Method: The intelligent virtual paving system, which uses multiple groups of 3D infrared scanners and signal processing systems, can collect and analyze 3D images in the roadway and perform virtual paving in the computer. This system can obtain the required parameters of roadway paving, such as the feeding amount, driving speed, limiter height, and width of the synovium, as well as give the initial paving parameters. Results: In the actual paving process, through virtual paving parameters, the feeding amount and accelerator can be regulated in real time, and the difference between the actual paving and virtual paving can be judged to change the paving width in real time. Conclusion: Intelligent virtual paver systems have a guiding significance for the improvement of existing paver systems.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5801
Author(s):  
Krzysztof Mazurek ◽  
Marek Szyguła ◽  
Andrzej Figiel ◽  
Krzysztof Filipowicz

Opening deeper coal seams requires constructing underground mine roadways in difficult geological conditions. Supporting of such roadways is subjected to a very high load from the rock mass. The types of roof supports used so far do not provide immediate support for the rock mass, which tends to converge the roadway, allowing for a rapid build-up of stresses in the surrounding rock mass. The article presents a new type of frame roadway support. This is a yielding support (consecutive arches are connected in a helical pattern), enabling the successive arches to be provided with initial load-bearing capacity already at the construction stage. The so-called unscrewing of the helix enables the arches to be pressed against the surface of the developed roadway with a controlled force. The introduction discusses the types of yielding roof supports used in the Polish mining industry and indicates their characteristic features. Further along in the article, the assumptions adopted for the construction of models to be tested and assumptions for the static and dynamic load to the models are defined, and the results of the model numerical tests are presented. The tests were aimed at comparing the qualitative behavior of the new roof support and the closed, circular support which is closest to it. The results of numerical tests confirmed the strength of the new solution not lower than the closed (circular) frame support, previously used in the most difficult geological conditions.


2021 ◽  
Vol 115 ◽  
pp. 104053
Author(s):  
Bin Tang ◽  
Mathias Yeboah ◽  
Hua Cheng ◽  
Yongzhi Tang ◽  
Zhishu Yao ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yongliang He ◽  
Mingshi Gao ◽  
Xu Dong ◽  
Xin Yu

With the increasing mining depth of coal mines, the occurrence of rockburst, especially in mine roadways, is becoming critical as a severe dynamic disaster. This paper explores the stability control of deep mine roadways and solves the contradiction between the support and pressure relief of roadways by studying the use of an internal steel pipe for wall protection and a soft structure for energy absorption during repeated borehole drilling. Numerical simulations are performed to examine the effects of active support technology on the support structure during repeated drilling. Internal steel pipes can effectively prevent the support structure from being damaged. When the soft structure cracks, the energy transmitted from the rockburst to the roadway is significantly reduced. According to the deformation and failure characteristics of the surrounding rock of the 21170 roadway, the combination of anchor active support, hydraulic lifting shed support, and soft structure energy absorption is proposed. An engineering case study shows that the support method can effectively maintain the stability of the surrounding rock and ensure the safe mining of the working face. The proposed control method can provide reference for the prevention and control of rockburst in mine roadways under similar geological conditions.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Yongliang He ◽  
Mingshi Gao ◽  
Dong Xu ◽  
Xin Yu

This paper studies the evolution and control of surrounding rock under different pressure relief support conditions in mine roadways in which rockburst events have occurred. The evolution of fractures in the surrounding rock was determined from borehole images obtained with a digital panoramic borehole camera, and the surface displacement due to the rockburst events in the mine roadway was measured. According to the existing problems of the original support system of the roadway, a new coupled support system to prevent rockburst events in mine roadways was proposed, resolving both the pressure relief and support of the roadway. Field measurements indicate that the effect on the roadway under the coupled method of pressure relief and support was more satisfactory than that under the original support system. With the coupled support method, the surface displacement of the roadway was approximately 0.6 m, fractures were distributed only in the soft structures and bolt anchorage areas, and the maximum depth of the fractures was 2.95 m. By contrast, under the original support system, fractures were distributed throughout the roadway surrounding rock, and the maximum depth of fractures was 6.75 m. This coupled roadway support technology of pressure relief and support effectively maintains the stability of the rock surrounding the roadway and ensures the safety of the working face. The research results can provide a reference for damage prevention and support of mine roadways prone to rockburst events.


2021 ◽  
Vol 11 (4) ◽  
pp. 1521
Author(s):  
Juncai Cao ◽  
Nong Zhang ◽  
Shanyong Wang ◽  
Qun Wei

Prestressed anchor support is one of the most important support methods for coal mine roadways. As the coal mining depth increases, the adaptability of existing prestressed anchor has become weaker and weaker, which is mainly reflected in the current anchor prestress is much smaller than the support resistance required for the stability of the roadways and makes it difficult to effectively control the roadways. In order to solve the problem, a group anchor structure was proposed to realize higher prestressed anchor support technology and improve the support status of deep roadways. For coal mine roadways, group anchor structure is a new technology and new topic, and the design method and theoretical basis of the group anchor support are lacking. Therefore, the paper studied the bearing capacity of the group anchors through physical tests and numerical simulations. Among them, a special set of group anchor drawing tooling was designed and processed to match the physical test. The test results show that the group anchor structure can double the bearing capacity and bearing rigidity compared with traditional anchors, and the group anchor support can further optimize the support parameters to improve the bearing capacity of the surrounding rock. Therefore, the group anchor support is helpful to the stability control of the surrounding rock of the deep roadway.


2021 ◽  
Vol 36 (4) ◽  
pp. 61-71
Author(s):  
Serhii Nehrii ◽  
Tetiana Nehrii ◽  
Oksana Zolotarova ◽  
Serhii Volkov

The conditions of coal seam mining in the mines of Ukraine have been considered. The problem of conducting coal mining by longwalls in the conditions of soft adjoining rocks, which concerns the protection of mine roadways located near the face, has been revealed. In such conditions, the existing protective constructions are ineffective due to the fact that they yield and get pressed into the soft rocks of the footwall. This indicated the need for research into the geomechanical state of soft rocks of the footwall. According to the results of known studies on the mechanism of rock mass failure around roadways and the data of physical and mechanical properties of the coal mass, which is represented by soft rocks, the correlation dependence has been obtained, the use of which allowed for the determination of the parameters of the rock deformation diagram and the establishment of the stability criterion of footwall rocks under the protection means and stability conditions of the geotechnical system “protective construction – adjoining rocks.” They are the basis of a new approach to ensure the stability of the roadways, which are supported behind the faces, by controlling the stress state in the system “protective construction – adjoining rocks.” This may be the basis for the development of new methods of protecting roadways in conditions of soft adjoining rocks.


Sign in / Sign up

Export Citation Format

Share Document